Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Methylene Blue (MB) is combined with radiopharmaceutical for intraoperative sentinel lymph node (SLN) mapping, but its role during SLN extirpation has not been investigated yet in veterinary medicine. The aim of this study was to assess whether MB increased surgical detection of SLN beyond the use of intraoperative gamma-probe (IGP) alone in clinically node-negative dogs with mast cell tumors (MCTs) following the detection of sentinel lymphocentrums (SLCs) via preoperative planar lymphoscintigraphy. Dogs enrolled underwent MCT excision and SLC exploration guided by both MB and IGP. Data recorded for each SLN were staining (blue/non-blue), radioactivity (hot/non-hot), and histopathological status (HN0-1 vs. HN2-3). A total of 103 dogs bearing 80 cutaneous, 35 subcutaneous, and 1 mucocutaneous MCTs were included; 140 SLCs were explored, for a total of 196 SLNs removed. Associating MB with IGP raised the SLNs detection rate from 90% to 95%. A total of 44% of SLNs were metastatic: 86% were blue/hot, 7% were only blue, 5% were only hot, and 2% were non-blue/non-hot. All HN3 SLNs were hot. Combining MB with IGP can increase the rate of SLN detection in dogs with MCTs; nonetheless, all lymph nodes identified during dissection should be removed, as they might be unstained but metastatic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10251889PMC
http://dx.doi.org/10.3390/ani13111854DOI Listing

Publication Analysis

Top Keywords

methylene blue
8
sentinel lymph
8
lymph node
8
mast cell
8
cell tumors
8
sln
5
evaluation surgical
4
surgical aid
4
aid methylene
4
blue addition
4

Similar Publications

This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.

View Article and Find Full Text PDF

A free radical polymerization approach was applied to synthesize different carboxymethyl cellulose-grafted poly(acrylamide) hydrogels (Hyd) composited with biochar, magnetic biochar, and magnetic biochar decorated with ZIF-67 to decontaminate methylene blue (MB) from water media. Biochar was obtained from walnut shells (WS) by a pyrolysis method, and magnetic biochar (WS/CoFeO) and biochar-decorated ZIF-67 (WS/CoFeO/ZIF-67) were prepared by chemical co-precipitation and hydrothermal methods, respectively. An increase in the amount of these particles by up to 10 wt% enhanced the removal performance.

View Article and Find Full Text PDF

Methemoglobinemia is an uncommon yet potentially life-threatening condition that results from the oxidation of iron from the ferrous (Fe²⁺) to the ferric (Fe³⁺) state, rendering hemoglobin unable to effectively transport oxygen. This translates into a state of functional hypoxia despite adequate arterial oxygen tension. Among the various causes of acquired methemoglobinemia, recreational inhalation of alkyl nitrites, widely known as "poppers," is a notable but underrecognized trigger.

View Article and Find Full Text PDF

Lignin, a negatively charged, three-dimensional natural biopolymer, serves as an ideal support for metal catalysts due to its abundant functional groups and tunable chemical properties, which enable strong metal coordination and effective immobilization. Herein, we demonstrate a lignin-mediated Co/O co-doped AgS, symbolized as L-AgCoOS, bimetal oxysulfide catalyst via a facile hydrolysis method for the efficient reduction of toxic phenolic compounds (4-nitrophenol, 4-NP), organic dyes (methyl orange (MO), methylene blue (MB), rhodamine B (RhB), and heavy metal ions Cr(VI)) under dark conditions. Lignin, used to immobilize catalysts, also contributes to increasing the number of active catalytic sites and enhancing catalytic activity.

View Article and Find Full Text PDF