98%
921
2 minutes
20
Background: The metastatic vascular patterns of hepatocellular carcinoma (HCC) are mainly microvascular invasion (MVI) and vessels encapsulating tumor clusters (VETC). However, most existing VETC-related radiological studies still focus on the prediction of VETC status.
Purpose: This study aimed to build and compare VETC-MVI related models (clinical, radiomics, and deep learning) associated with recurrence-free survival of HCC patients.
Study Type: Retrospective.
Population: 398 HCC patients (349 male, 49 female; median age 51.7 years, and age range: 22-80 years) who underwent resection from five hospitals in China. The patients were randomly divided into training cohort (n = 358) and test cohort (n = 40).
Field Strength/sequence: 3-T, pre-contrast T1-weighted imaging spoiled gradient recalled echo (T1WI SPGR), T2-weighted imaging fast spin echo (T2WI FSE), and contrast enhanced arterial phase (AP), delay phase (DP).
Assessment: Two radiologists performed the segmentation of HCC on T1WI, T2WI, AP, and DP images, from which radiomic features were extracted. The RFS related clinical characteristics (VETC, MVI, Barcelona stage, tumor maximum diameter, and alpha fetoprotein) and radiomic features were used to build the clinical model, clinical-radiomic (CR) nomogram, deep learning model. The follow-up process was done 1 month after resection, and every 3 months subsequently. The RFS was defined as the date of resection to the date of recurrence confirmed by radiology or the last follow-up. Patients were followed up until December 31, 2022.
Statistical Tests: Univariate COX regression, least absolute shrinkage and selection operator (LASSO), Kaplan-Meier curves, log-rank test, C-index, and area under the curve (AUC). P < 0.05 was considered statistically significant.
Results: The C-index of deep learning model achieved 0.830 in test cohort compared with CR nomogram (0.731), radiomic signature (0.707), and clinical model (0.702). The average RFS of the overall patients was 26.77 months (range 1-80 months).
Data Conclusion: MR deep learning model based on VETC and MVI provides a potential tool for survival assessment.
Evidence Level: 3 TECHNICAL EFFICACY: Stage 3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmri.29064 | DOI Listing |
Hum Brain Mapp
September 2025
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.
Investigating neuroimaging data to identify brain-based markers of mental illnesses has gained significant attention. Nevertheless, these endeavors encounter challenges arising from a reliance on symptoms and self-report assessments in making an initial diagnosis. The absence of biological data to delineate nosological categories hinders the provision of additional neurobiological insights into these disorders.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
September 2025
Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India.
Parkinson's disease (PD) is a neurodegenerative condition that impairs motor functions. Accurate and early diagnosis is essential for enhancing well-being and ensuring effective treatment. This study proposes a deep learning-based approach for PD detection using EEG signals.
View Article and Find Full Text PDFEur J Case Rep Intern Med
August 2025
Internal Medicine, University of California, Riverside School of Medicine, Riverside, USA.
Introduction: Pulmonary embolism (PE) is a life-threatening condition with well-defined management strategies; however, the presence of a clot-in-transit (CIT)-a mobile thrombus within the right heart-introduces a uniquely high-risk scenario associated with a significantly elevated mortality rate. While several therapeutic approaches are available-including anticoagulation, systemic thrombolysis, surgical embolectomy, and catheter-directed therapies-there is no established consensus on a superior treatment modality. Catheter-based mechanical thrombectomy has emerged as a promising, minimally invasive alternative that mitigates the bleeding risks of systemic thrombolysis and the invasiveness of surgery.
View Article and Find Full Text PDFJ Clin Exp Hepatol
August 2025
Dept of Histopathology, PGIMER, Chandigarh, 160012, India.
Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.
View Article and Find Full Text PDFRadiol Adv
September 2024
Department of Radiology, Northwestern University and Northwestern Medicine, Chicago, IL, 60611, United States.
Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.
Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.