A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Drought-induced fiber water release and xylem embolism susceptibility of intact balsam poplar saplings. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Balsam poplar (Populus balsamifera L.) is a widespread tree species in North America with significant ecological and economic value. However, little is known about the susceptibility of saplings to drought-induced embolism and its link to water release from surrounding xylem fibers. Questions remain regarding localized mechanisms that contribute to the survival of saplings in vivo of this species under drought. Using X-ray micro-computed tomography on intact saplings of genotypes Gillam-5 and Carnduff-9, we found that functional vessels are embedded in a matrix of water-filled fibers under well-watered conditions in both genotypes. However, water-depleted fibers started to appear under moderate drought stress while vessels remained water-filled in both genotypes. Drought-induced xylem embolism susceptibility was comparable between genotypes, and a greater frequency of smaller diameter vessels in GIL-5 did not increase embolism resistance in this genotype. Despite having smaller vessels and a total vessel number that was comparable to CAR-9, stomatal conductance was generally higher in GIL-5 compared to CAR-9. In conclusion, our in vivo data on intact saplings indicate that differences in embolism susceptibility are negligible between GIL-5 and CAR-9, and that fiber water release should be considered as a mechanism that contributes to the maintenance of vessel functional status in saplings of balsam poplar experiencing their first drought event.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.14040DOI Listing

Publication Analysis

Top Keywords

water release
12
embolism susceptibility
12
balsam poplar
12
fiber water
8
xylem embolism
8
saplings balsam
8
intact saplings
8
saplings
6
embolism
5
drought-induced fiber
4

Similar Publications