98%
921
2 minutes
20
The synthesis of drug-loaded microparticles with precise control over size distribution and shape is crucial for achieving desired drug distribution in microparticles and tuning drug release profiles. Common large-scale production techniques produce microparticles with a broad particle size distribution and require challenging operating conditions. Recent methods employing microfluidics have enabled the production of microparticles with a uniform size distribution. Still, these methods are limited to low and moderate production rates and can handle fluids with a limited range of physicochemical properties. In this study, we couple the spinning disk atomization (SDA) technique for microdroplet production with a precipitation method to generate drug-loaded polymeric microparticles with a narrow size distribution. The design criteria and fabrication of equipment with a non-contact seal system that integrates spinning disk atomization and precipitation methods for conducting laboratory experiments involving volatile hydrocarbons while ensuring operational and personnel safety are discussed. The production of itraconazole drug-loaded microparticles using the SDA setup that considers the system's operation, maintenance, and safety aspects are discussed, and the system's efficiency is evaluated through material balance. This laboratory equipment is capable of producing drug-loaded microparticles with a narrow size distribution under moderate operating conditions and can be scaled up suitably to meet high production requirements. The applications of this equipment can be explored in various fields, such as the production of drug particles, conversion of waste polymers into microparticles, and microencapsulation of food ingredients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0139096 | DOI Listing |
Clin Anat
September 2025
Department of Communication Disorders and Sciences, Rush University Medical Center, Chicago, Illinois, USA.
This research sought to examine the prevalence and severity of hyperostosis frontalis interna (HFI) in the Chicagoland anatomical body donor population. The study further aimed to elucidate potential demographic risk factors for HFI, including sex, age at death, and structural vulnerability index (SVI), as well as any common comorbidities, as gleaned from death certificates. HFI is an irregular bony overgrowth of the endocranial surface of the frontal bone.
View Article and Find Full Text PDFJ Sci Food Agric
September 2025
College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.
Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.
View Article and Find Full Text PDFFood Chem X
August 2025
Department of Toxicology, İstanbul Aydın University, P.O. Box 65, 00014 Istanbul, Turkey.
This study investigated the effect of refining time on the physicochemical and functional properties of anhydrous cream prepared from a palm-sunflower oil blend using a stirred ball mill. Refining was performed for 0-300 min, and its impact on particle size distribution, rheology, oxidative stability, and thermal behavior was assessed. The target particle fineness (D90 ≤ 30 μm) was achieved at approximately 180 min, with negligible reduction thereafter.
View Article and Find Full Text PDFJ Biomed Opt
September 2025
Fraunhofer Institute for Microelectronic Circuits and Systems IMS, Duisburg, Germany.
Significance: The spatial and temporal distribution of fluorophore fractions in biological and environmental systems contains valuable information about the interactions and dynamics of these systems. To access this information, fluorophore fractions are commonly determined by means of their fluorescence emission spectrum (ES) or lifetime (LT). Combining both dimensions in temporal-spectral multiplexed data enables more accurate fraction determination while requiring advanced and fast analysis methods to handle the increased data complexity and size.
View Article and Find Full Text PDFAppl Biosaf
August 2025
Global Center for Health Security, University of Nebraska Medical Center, Omaha, Nebraska, USA.
Introduction: Laboratory-acquired infections (LAIs) from exposure to infectious biological pathogens during laboratory operations present ongoing challenges despite modern biosafety measures. Notably, LAIs attributed to inhaling infectious aerosols continue to occur.
Objective: This review aims to enhance understanding of the risks of LAIs associated with infectious aerosols.