98%
921
2 minutes
20
Background: The duplication-triplication/inverted-duplication (DUP-TRP/INV-DUP) structure is a type of complex genomic rearrangement (CGR) hypothesized to result from replicative repair of DNA due to replication fork collapse. It is often mediated by a pair of inverted low-copy repeats (LCR) followed by iterative template switches resulting in at least two breakpoint junctions . Although it has been identified as an important mutation signature of pathogenicity for genomic disorders and cancer genomes, its architecture remains unresolved and is predicted to display at least four structural variation (SV) haplotypes.
Results: Here we studied the genomic architecture of DUP-TRP/INV-DUP by investigating the genomic DNA of 24 patients with neurodevelopmental disorders identified by array comparative genomic hybridization (aCGH) on whom we found evidence for the existence of 4 out of 4 predicted SV haplotypes. Using a combination of short-read genome sequencing (GS), long- read GS, optical genome mapping and StrandSeq the haplotype structure was resolved in 18 samples. This approach refined the point of template switching between inverted LCRs in 4 samples revealing a DNA segment of ∼2.2-5.5 kb of 100% nucleotide similarity. A prediction model was developed to infer the LCR used to mediate the non-allelic homology repair.
Conclusions: These data provide experimental evidence supporting the hypothesis that inverted LCRs act as a recombinant substrate in replication-based repair mechanisms. Such inverted repeats are particularly relevant for formation of copy-number associated inversions, including the DUP-TRP/INV-DUP structures. Moreover, this type of CGR can result in multiple conformers which contributes to generate diverse SV haplotypes in susceptible .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592851 | PMC |
http://dx.doi.org/10.1101/2023.10.02.560172 | DOI Listing |
bioRxiv
July 2025
Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
The most common genomic disorder, chromosome 22q11.2 microdeletion syndrome (22q11.2DS), is mediated by highly identical and polymorphic segmental duplications (SDs) known as low copy repeats (LCRs; regions A-D) that have been challenging to sequence and characterize.
View Article and Find Full Text PDFGigascience
December 2022
IEETA, Institute of Electronics and Informatics Engineering of Aveiro, and LASI, Intelligent Systems Associate Laboratory, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
Background: Low-complexity data analysis is the area that addresses the search and quantification of regions in sequences of elements that contain low-complexity or repetitive elements. For example, these can be tandem repeats, inverted repeats, homopolymer tails, GC-biased regions, similar genes, and hairpins, among many others. Identifying these regions is crucial because of their association with regulatory and structural characteristics.
View Article and Find Full Text PDFBackground: The duplication-triplication/inverted-duplication (DUP-TRP/INV-DUP) structure is a type of complex genomic rearrangement (CGR) hypothesized to result from replicative repair of DNA due to replication fork collapse. It is often mediated by a pair of inverted low-copy repeats (LCR) followed by iterative template switches resulting in at least two breakpoint junctions . Although it has been identified as an important mutation signature of pathogenicity for genomic disorders and cancer genomes, its architecture remains unresolved and is predicted to display at least four structural variation (SV) haplotypes.
View Article and Find Full Text PDFPLoS Genet
December 2015
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America.
Many loci in the human genome harbor complex genomic structures that can result in susceptibility to genomic rearrangements leading to various genomic disorders. Nephronophthisis 1 (NPHP1, MIM# 256100) is an autosomal recessive disorder that can be caused by defects of NPHP1; the gene maps within the human 2q13 region where low copy repeats (LCRs) are abundant. Loss of function of NPHP1 is responsible for approximately 85% of the NPHP1 cases-about 80% of such individuals carry a large recurrent homozygous NPHP1 deletion that occurs via nonallelic homologous recombination (NAHR) between two flanking directly oriented ~45 kb LCRs.
View Article and Find Full Text PDFEur J Hum Genet
July 2013
Molecular Biology Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy.
Submicroscopic structural variations, including deletions, duplications, inversions and more complex rearrangements, are widespread in normal human genomes. Inverted segmental duplications or highly identical low-copy repeat (LCR) sequences can mediate the formation of inversions and more complex structural rearrangements through non-allelic homologous recombination. In a patient with 7q36 inverted duplication/terminal deletion, we demonstrated the central role of a pair of short inverted LCRs in the vasoactive intestinal peptide receptor gene (VIPR2)-LCRs in generating the rearrangement.
View Article and Find Full Text PDF