Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electronic devices based on tin halide perovskites often exhibit a poor operational stability. Here, we report an additive engineering strategy to realize high-performance and stable field-effect transistors (FETs) based on 3D formamidinium tin iodide (FASnI) films. By comparatively studying the modification effects of two additives, i.e., phenethylammonium iodide and 4-fluorophenylethylammonium iodide via combined experimental and theoretical investigations, we unambiguously point out the general effects of phenethylammonium (PEA) and its fluorinated derivative (FPEA) in enhancing crystallization of FASnI films and the unique role of fluorination in reducing structural defects, suppressing oxidation of Sn and blocking oxygen and water involved defect reactions. The optimized FPEA-modified FASnI FETs reach a record high field-effect mobility of 15.1 cm/(V·s) while showing negligible hysteresis. The devices exhibit less than 10% and 3% current variation during over 2 h continuous bias stressing and 4200-cycle switching test, respectively, representing the best stability achieved so far for all Sn-based FETs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580314PMC
http://dx.doi.org/10.1021/acsenergylett.3c01400DOI Listing

Publication Analysis

Top Keywords

field-effect transistors
8
formamidinium tin
8
tin iodide
8
fasni films
8
high-mobility bias-stable
4
bias-stable field-effect
4
transistors based
4
based lead-free
4
lead-free formamidinium
4
iodide
4

Similar Publications

While fluorene-containing materials are widely used in organic optoelectronics as bright emitters and hole semiconductors, their diazafluorene analogues have been poorly explored, though their nitrogen atoms could result in electron transport and bring sensory abilities. Here, we report the synthesis, characterization, and detailed study of a series of 4,5-diazafluorene-derivatives with different donor/acceptor substituents and organic semiconductors based on these molecules. The crystal structures of all the materials were solved by X-ray diffraction, indicating the presence of extensive π-stacking and anisotropic charge-transfer pathways.

View Article and Find Full Text PDF

Wafer-Scale Demonstration of BEOL-Compatible Ambipolar MoS Devices Enabled by Plasma-Enhanced Atomic Layer Deposition.

ACS Appl Mater Interfaces

September 2025

Nanoelectronics Graphene and 2D Materials Laboratory, CITIC-UGR, Department of Electronics, University of Granada, Granada 18014, Spain.

The relentless scaling of semiconductor technology demands materials beyond silicon to sustain performance improvements. Transition metal dichalcogenides (TMDs), particularly MoS, offer excellent electronic properties; however, achieving scalable and CMOS-compatible fabrication remains a critical challenge. Here, we demonstrate a scalable and BEOL-compatible approach for the direct wafer-scale growth of MoS devices using plasma-enhanced atomic layer deposition (PE-ALD) at temperatures below 450 °C, fully compliant with CMOS thermal budgets.

View Article and Find Full Text PDF

Chemical doping has emerged as a powerful approach for modulating the electronic properties of graphene, and particularly for enabling its integration into advanced electronic and optoelectronic devices. While considerable progress has been made in achieving stable p-type doping, realizing efficient and reliable n-type doping remains a greater challenge due to the inherent instability of most electron-donating dopants and intrinsic semi-metallic nature of pristine graphene. This review summarises the recent developments in n-type chemical doping of graphene films, with a primary focus on substitutional doping and surface charge transfer mechanisms.

View Article and Find Full Text PDF

Distinct Hole and Electron Transport Anisotropy in Ambipolar Nickel Dithiolene-Based Semiconductor.

Angew Chem Int Ed Engl

September 2025

The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan.

Understanding anisotropic charge transport in molecular semiconductors is crucial for device optimization, yet its intricate dependence on orbital-specific intermolecular interactions and molecular packing remains a challenge, especially in ambipolar systems. In ambipolar semiconductors, where both holes and electrons participate in conduction, distinct molecular orbitals prompt a critical inquiry: can orbital variations result in coexisting yet distinct anisotropic transport properties within a single component? We confirm this possibility by demonstrating that the air-stable nickel dithiolene, Ni(4OPr), exhibits such behavior. Despite its herringbone stacking implying a two-dimensional electronic structure, Ni(4OPr) uniquely exhibits distinct intermolecular interactions for hole (HOMO-to-HOMO; HOMO = highest occupied molecular orbital) and electron (LUMO-to-LUMO; LUMO = lowest unoccupied molecular orbital) transport.

View Article and Find Full Text PDF

Temperature dependent characteristics of the 2N4416 JFET for radiation spectrometer charge-sensitive pre-amplifiers.

Appl Radiat Isot

September 2025

Dept. of Electrical and Computer Engineering, Illinois Institute of Technology, Siegel Hall, 3301 South Dearborn Street, Chicago, Il, 60616, USA; Sch. of Engineering, University of Warwick, Coventry, CV4 7AL, UK.

Feedback resistor-less charge-sensitive pre-amplifiers for X-ray/γ-ray photon (and e particle) counting photodiode radiation spectrometers operate with their input transistor in an unusual mode (i.e. the gate is slightly forward biased).

View Article and Find Full Text PDF