98%
921
2 minutes
20
Results of toxicological studies indicate that phthalates and per-/polyfluoroalkyl substances (PFAS), 2 classes of endocrine-disrupting chemicals, may alter the functioning of the hypothalamic-pituitary-adrenocortical (HPA) axis. We evaluated the associations of urinary phthalate metabolites and serum PFAS during gestation and childhood with adolescent hair cortisol concentrations (pg/mg hair) at age 12 years, an integrative marker of HPA axis activity (n = 205 mother-child pairs; Cincinnati, Ohio; enrolled 2003-2006). We used quantile-based g-computation to estimate associations between mixtures of urinary phthalate metabolites or serum PFAS and hair cortisol. We also examined whether associations of individual phthalate metabolites or PFAS with cortisol varied by the timing of exposure. We found that a 1-quartile increase in all childhood phthalate metabolites was associated with 35% higher adolescent hair cortisol (phthalate mixture ψ = 0.13; 95% confidence interval: 0.03, 0.22); these associations were driven by monoethyl phthalate, monoisobutyl phthalate, and monobenzyl phthalate. We did not find evidence that phthalate metabolites during gestation or serum PFAS mixtures were related to adolescent hair cortisol concentrations. We found suggestive evidence that higher childhood concentrations of individual PFAS were related to higher and lower adolescent hair cortisol concentrations. Our results suggest that phthalate exposure during childhood may contribute to higher levels of chronic HPA axis activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484647 | PMC |
http://dx.doi.org/10.1093/aje/kwad198 | DOI Listing |
Reprod Toxicol
September 2025
School of Public Health, Beihua University, Jilin 132013, China. Electronic address:
This study aimed to investigate the protective mechanism of Ginsenoside Rg3 (Rg3) against Di-n-butyl phthalate (DBP) induced spermatogenic damage, focusing on the Src/PI3K/Akt pathway. In vivo experiments demonstrated that Rg3 restored DBP-induced dysregulation of gap junction (GJ) protein connexin 43 (Cx43), improved testicular structure, enhanced sperm parameters (count and motility), and upregulated phosphorylation of Src, PI3K, and Akt (p-Src, p-PI3K, p-Akt) in mice. In vitro studies, using the metabolite of DBP, monobutyl phthalate (MBP), and pathway inhibitors (PP2 for Src and LY294002 for PI3K), further confirmed these effects.
View Article and Find Full Text PDFEnviron Int
September 2025
Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China. Electronic address:
Background: Studies suggest that phthalates (PAEs) may disrupt female reproductive health, but few have explored repeated measurements of PAE and their alternative exposure and their joint impact on reproductive outcomes.
Objectives: To evaluate the associations of repeatedly measured urinary levels of PAE and their alternative metabolites with reproductive outcomes in women receiving in vitro fertilization (IVF).
Methods: This study included 704 women undergoing IVF between February and October 2023 in Chongqing, China.
Ecotoxicol Environ Saf
September 2025
Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Health and Birth Defects Prevention and Control, China. Electronic address:
Di-isobutyl phthalate (DiBP), a member of the phthalate esters, is frequently used in manufacturing consumer and industrial products as plasticizer to improve durability and flexibility. Despite much research, little is known about the direct mechanisms by which DiBP harms the male reproductive system. In the present study, a male ICR mice model was developed to investigate the reproductive effect and mechanism of DiBP exposure, followed by transcriptomics, non-targeted metabolome, and 16S rDNA sequencing accordingly.
View Article and Find Full Text PDFFood Res Int
November 2025
Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China. Electronic address:
This study aimed to investigate the protective mechanism of Osmanthus fragrans water extract (OSF) against liver injury induced by dibutyl phthalate (DBP). We utilized liver organoids and liver organ chip technology to replicate the liver microenvironment in vivo. Metabolomic analysis revealed that DBP induced oxidative stress and lipid metabolism disorders; however, following intervention with OSF, the associated abnormal metabolites were significantly reduced.
View Article and Find Full Text PDFBMC Microbiol
September 2025
Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, 11421, Egypt.
Background: The emergence of drug-resistant pathogens has stimulated the need for the development of new antimicrobial agents. Epigenetic modulation by suppressing epigenetic inhibitors, such as 5-azacytidine (5-aza), has been shown to activate silent biosynthetic gene clusters within a fungus and causes the production of novel secondary metabolites. This research examined this epigenetic modification strategy in the poorly studied filamentous fungus, Ceratorhiza hydrophila, which may help induce the additional production of bioactive compounds.
View Article and Find Full Text PDF