98%
921
2 minutes
20
The magneto-optical (MO) Kerr effects for ZnO and ZnO:Ni-doped nanolaminate structures prepared using atomic layer deposition (ALD) have been investigated. The chemical composition and corresponding structural and morphological properties were studied using XRD and XPS and compared for both nanostructures. The 2D array gradient maps of microscale variations of the Kerr angle polarization rotation were acquired by means of MO Kerr microscopy. The obtained data revealed complex behavior and broad statistical dispersion and showed distinct qualitative and quantitative differences between the undoped ZnO and ZnO:Ni-doped nanolaminates. The detected magneto-optical response is extensively inhomogeneous in ZnO:Ni films, and a giant Kerr polarization rotation angle reaching up to ~2° was established. This marks the prospects for further development of magneto-optical effects in ALD ZnO modified by transition metal oxide nanostructures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574388 | PMC |
http://dx.doi.org/10.3390/ma16196547 | DOI Listing |
Small
September 2025
Department of Semiconductor Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon, 24341, South Korea.
2D van der Waals ferromagnets hold immense promise for spintronic applications due to their controllability and versatility. Despite their significance, the realization and in-depth characterization of ferromagnetic materials in atomically thin single layers, close to the true 2D limit, has been scarce. Here, a successful synthesis of monolayer (ML) 1T-CrTe is reported on a bilayer graphene (BLG) substrate via molecular beam epitaxy.
View Article and Find Full Text PDFSensors (Basel)
August 2025
Department of Applied Physics, University of Basque Country, UPV/EHU, 20018 San Sebastian, Spain.
In the pursuit of active elements for bending and curvature sensors, magneto-optical investigations were performed on bent microwires. For the first time, local surface magnetization reversal curves were obtained from various sides of bent Co-rich and Fe-rich microwires. The observed differences in surface magnetization reversal behavior are directly attributed to the transverse distribution of internal mechanical stresses, which range from maximum tensile stress on the outer side of the bent sample to maximum compressive stress on the inner side.
View Article and Find Full Text PDFAdv Mater
August 2025
School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
2D magnetic materials offer significant potential for advanced spintronics, but their practical implementation is hindered by fundamental limitations such as low Curie temperatures and the current inability to achieve scalable, large-area synthesis. Herein, a significant breakthrough in the centimeter-scale epitaxial growth of ultrathin single-crystalline magnetic ferrite films, including cobalt ferrite, manganese ferrite, and nickel ferrite is reported. By leveraging symmetry-matching-induced energy splitting between antiparallel orientations and developing a precisely engineered nucleation timing strategy to amplify synergistic coupling, unidirectional epitaxial growth with seamless domain coalescence is achieved.
View Article and Find Full Text PDFNat Commun
August 2025
TU Dortmund University, Otto-Hahn-Straße 4, 44227, Dortmund, Germany.
Advancing quantum information and communication technology requires smaller and faster components with actively controllable functionalities. This work presents an all-optical strategy for dynamically modulating magnetic properties via proximity effects controlled by light. We demonstrate this concept using hybrid nanoscale systems composed of C₆₀ molecules proximitized to a cobalt metallic ferromagnetic surface, where proximity interactions are particularly strong.
View Article and Find Full Text PDFSci Rep
August 2025
Leibniz Institute for Solid State and Materials Research Dresden, 01099, Dresden, Germany.
Magneto-optical methods, which utilize the interaction of polarized light with the magnetization of the sample in reflection through the magneto-optical Kerr effect or in transmission through the accordant Faraday effect, present prominent and widespread optical microscopy techniques for studying magnetic microstructures. In non-magnetic light microscopy, several alternatives to lens-based imaging have been developed, which offer various advantages, including an improved ratio of field-of-view to magnification. Selected lensless methods also provide access to both intensity and phase information of the probing light field, which presents an additional information channel obtainable from the studied sample.
View Article and Find Full Text PDF