98%
921
2 minutes
20
Objective: The aim of the ILAM (Individualized Laparoscopic Anatomical Mesh) study was to create and implant a fully individualized mesh based on CT scans, taking into account the published body of knowledge about the material and mechanical behavior of the implant for laparoscopic inguinal hernia repair.
Summary Background Data: The team creating and conducting this study consisted of surgeons and engineers. A specific project was made and divided into 4 phases.
Methods: The process of development and implantation was divided into 4 milestones: CT scans and modeling based on predefined subgroups, mesh manufacture, certification and clinical evaluation.
Results: The result of the study was the first individually designed hernia mesh to have been implanted in a human subject. After 12 months of follow-up, no recurrences or other complications were reported.
Conclusions: The new mesh provides a better anatomic fit to the patients' inguinal region geometry. Mechanical stability is ensured by the multiple contact points between the implant and the tissues, which generate friction forces. Together with the possibility of shape design (proper overlap), the authors believe that there is no need for mesh fixation. If so, the use of such design meshes can change the guidelines in laparoendoscopic hernia repair in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/15533506231208335 | DOI Listing |
PLoS One
September 2025
Orthopaedics, Hebei Medical University Third Hospital, Shijiazhuang, China.
Enoxaparin sodium (ES), a low molecular weight heparin derivative, has recently been recognized for its diverse biological activities. In particular, the ability of heparin to modulate inflammation has been utilized to enhance the biocompatibility of bone implant materials. In this study, we utilized poly (methyl methacrylate) (PMMA), a drug loading bone implant material, as a matrix and combined this with enoxaparin sodium (ES) to create enoxaparin sodium PMMA cement (ES-PMMA) to investigate the regulatory effects of ES on inflammatory responses in bone tissue from an animal model.
View Article and Find Full Text PDFInterv Neuroradiol
September 2025
Department of Neuroradiology, Walton Centre for Neurology and Neurosurgery, Liverpool, UK.
ObjectiveThis study aims to determine the outcomes of nickel allergic patients who underwent a trial of forearm arterial stenting with a nickel-based stent, with follow-up to assess for an allergic reaction. In the absence of adverse effects, patients had their intracranial aneurysm treatment with a nickel-based cerebrovascular device.MethodsA retrospective analysis was performed on patients who had an allergy to nickel, with an intracranial aneurysm who underwent treatment with a permanently implanted nickel-containing device.
View Article and Find Full Text PDFACS Nano
September 2025
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev
Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
Neurogenic bladder and lower urinary tract (LUT) dysfunctions encompass a wide variety of urinary disorders resulting from nervous system impairments. Unfortunately, conventional treatments are still limited and can have significant complication rates, especially when stent implantations or other surgical procedures are involved. Therefore, there is a critical need to develop novel therapeutic strategies and pharmacological approaches to address these challenging urological conditions.
View Article and Find Full Text PDFAdv Mater
September 2025
State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
Regulating the differentiation of implanted stem cells into neurons is crucial for stem cell therapy of traumatic brain injury (TBI). However, due to the migratory nature of implanted stem cells, precise and targeted regulation of their fate remains challenging. Here, neural stem cells (NSCs) are bio-orthogonally engineered with hyaluronic acid methacryloyl (HAMA) microsatellites capable of sustained release of differentiation modulators for targeted regulation of their neuronal differentiation and advanced TBI repair.
View Article and Find Full Text PDF