98%
921
2 minutes
20
Introduction: In the soda-saline grasslands of the Songnen Plain, Jilin Province, China, the prohibition of grazing has led to significant changes in plant communities and soil properties. However, the intricate interplay between soil physical and chemical attributes, the soil microbial community, and their combined influence on soil humus composition remains poorly understood.
Methods: Our study aimed to evaluate the impact of natural vegetation restoration on soil properties, microbial community diversity, and composition in the soda-saline soil region of the Songnen Plain. We conducted assessments of soil physical and chemical properties, analyzed community diversity, and composition at a soil depth range of 0-20 cm. The study covered soils with dominant soda-saline vegetation species, including Bunge, Ohwi, Swarta, (Clay.), (Trin.), and Tzvelev. We compared these vegetated soils to bare land devoid of any plants.
Results: We found that soil organic content (SOC) in vegetation restoration areas was higher than in bare land, with SOC content varying between 3.64 and 11.15 g/kg in different vegetated areas. Notably, soil pH emerged as a pivotal factor, explaining 11.4% and 12.2% of the variance in soil bacteria and fungi, respectively. There were correlations between SOC content and the relative abundance of specific microbial groups, with Acidobacteria and Mortierella showing a positive correlation, while Actinobacteria, Gemmatimonadetes, and Ascomycota exhibited significant negative correlations with SOC.
Discussion: The disparities in SOC composition and content among the soda-saline vegetation types were primarily attributed to variations in pH. Consequently, reducing soil pH is identified as a critical step in the process of vegetation restoration in soda-saline land. Prohibiting grazing has the potential to increase soda-saline SOC content and enhance microbial diversity, with and showing particularly promising results in terms of higher SOC carbon content and microbial diversity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10551454 | PMC |
http://dx.doi.org/10.3389/fmicb.2023.1163444 | DOI Listing |
Rapid Commun Mass Spectrom
December 2025
Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany.
Microbes Environ
September 2025
Research Field in Agriculture, Agriculture Fisheries and Veterinary Medicine Area, Kagoshima University.
Sweet potato foot rot disease caused by Diaporthe destruens (formerly Plenodomus destruens) severely affects the yield and quality of sweet potatoes. To gain basic knowledge on regulating the pathogen using indigenous soil bacteria, the following organic materials were applied to potted soils collected from a sweet potato field contaminated with D. destruens: Kuroihitomi (compost made from shochu waste and chicken manure), Soil-fine (material made by adsorbing shochu waste on rice bran), and rice bran.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:
Tomato Fusarium wilt, caused by the soil-borne pathogen Fusarium oxysporum f. sp. lycopersici (Fol), poses a significant threat to global tomato production, resulting in severe losses in both yield and quality.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, PR China. Electronic address: wj
Difenoconazole (DFC) is a commonly used triazole fungicide known for its high efficiency and environmental persistence. A thorough understanding of its environmental behavior, particularly sorption in soil, is critical to obtain a comprehensive assessment of the ecological risk of DFC. In this study, three soils with distinct physicochemical properties (brown soil, cinnamon soil, and fluvo-aquic soil) were used to elucidate the adsorption mechanisms of DFC on soil.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China. Electronic ad
Mortierella spp. is emerging as a potential biocontrol agent against soil borne diseases due to its antagonistic effects on pathogens and strong environmental adaptability. However, the mechanisms by which it restructures rhizosphere microbial communities to achieve sustained pathogen suppression remain largely unresolved.
View Article and Find Full Text PDF