Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rationale And Objectives: Following autosomal dominant polycystic kidney disease (ADPKD) progression by measuring organ volumes requires low measurement variability. The objective of this study is to reduce organ volume measurement variability on MRI of ADPKD patients by utilizing all pulse sequences to obtain multiple measurements which allows outlier analysis to find errors and averaging to reduce variability.

Materials And Methods: In order to make measurements on multiple pulse sequences practical, a 3D multi-modality multi-class segmentation model based on nnU-net was trained/validated using T1, T2, SSFP, DWI and CT from 413 subjects. Reproducibility was assessed with test-re-test methodology on ADPKD subjects (n = 19) scanned twice within a 3-week interval correcting outliers and averaging the measurements across all sequences. Absolute percent differences in organ volumes were compared to paired students t-test.

Results: Dice similarlity coefficient > 97%, Jaccard Index > 0.94, mean surface distance < 1 mm and mean Hausdorff Distance < 2 cm for all three organs and all five sequences were found on internal (n = 25), external (n = 37) and test-re-test reproducibility assessment (38 scans in 19 subjects). When averaging volumes measured from five MRI sequences, the model automatically segmented kidneys with test-re-test reproducibility (percent absolute difference between exam 1 and exam 2) of 1.3% which was better than all five expert observers. It reliably stratified ADPKD into Mayo Imaging Classification (area under the curve=100%) compared to radiologist.

Conclusion: 3D deep learning measures organ volumes on five MRI sequences leveraging the power of outlier analysis and averaging to achieve 1.3% total kidney test-re-test reproducibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10957335PMC
http://dx.doi.org/10.1016/j.acra.2023.09.009DOI Listing

Publication Analysis

Top Keywords

organ volume
8
organ volumes
8
measurement variability
8
pulse sequences
8
test retest
4
retest reproducibility
4
organ
4
reproducibility organ
4
measurements
4
volume measurements
4

Similar Publications

Volumetric modulated arc therapy (VMAT) for lung cancer involves complex multileaf collimator (MLC) motion, which increases sensitivity to interplay effects with tumour motion. Current dynamic conformal arc methods address this issue but may limit the achievable dose distribution optimisation compared with standard VMAT. This study examined the clinical utility of a VMAT technique with monitor unit limits (VMATliMU) to mimic conformal arc delivery and reduce interplay effects while maintaining plan quality.

View Article and Find Full Text PDF

Background: High-dose-rate (HDR) brachytherapy is essential in the treatment of locally advanced cervical cancer. While Iridium-192 (Ir-192) is commonly used, its short half-life imposes logistical and financial constraints, particularly in low- and middle-income countries (LMICs). Cobalt-60 (Co-60), with a longer half-life and lower operational costs, is a viable alternative.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to investigate the focal relationship between choroidal thickness and retinal sensitivity in myopic eyes.

Methods: Participants underwent swept-source optical coherence tomography (SS-OCT) imaging and microperimetry testing. Choroidal thicknesses were obtained by segmenting the SS-OCT scans using a deep-learning approach.

View Article and Find Full Text PDF

The Hippo pathway and its transcription co-activator YAP play a critical role in the regulation of cell proliferation, apoptosis and the control of organ size. In the past several years, YAP has been found to be expressed in various human cancers, however, its expression in Nasopharyngeal Carcinoma (NPC) remains unstudied. In this report, we found that YAP was overexpressed in human NPC tissues, and its expression was also significantly higher in five NPC cell lines when compared with the nasopharyngeal epithelial cell line NP69 (P < 0.

View Article and Find Full Text PDF

Multiscale Engineered Heterogeneous Hydrogel Composites for Digital Light Processing 3D Printing.

ACS Appl Mater Interfaces

September 2025

Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States.

Hydrogel-based bioinks are widely adopted in digital light processing (DLP) 3D printing. Modulating their mechanical properties is especially beneficial in biomedical applications, such as directing cell activity toward tissue regeneration and healing. However, in both monolithic and granular hydrogels, the tunability of mechanical properties is limited to parameters such as cross-linking or packing density.

View Article and Find Full Text PDF