98%
921
2 minutes
20
Polycyclic aromatic hydrocarbons (PAHs) are pervasive in the atmosphere and are one of the emerging pollutants that cause harmful effects in living systems. There are some natural and anthropogenic sources that can produce PAHs in an uncontrolled way. Several health hazards associated with PAHs like abnormality in the reproductive system, endocrine system as well as immune system have been explained. The mutagenic or carcinogenic effects of hydrocarbons in living systems including algae, vertebrates and invertebrates have been discussed. For controlling PAHs, biodegradation has been suggested as an effective and eco-friendly process. Microalgae-based biosorption and biodegradation resulted in the removal of toxic contaminants. Microalgae both in unialgal form and in consortium (with bacteria or fungi) performed good results in bioaccumulation and biodegradation. In the present review, we highlighted the general information about the PAHs, conventional versus advanced technology for removal. In addition microalgae based removal and toxicity is discussed. Furthermore this work provides an idea on modern scientific applications like genetic and metabolic engineering, nanomaterials-based technologies, artificial neural network (ANN), machine learning (ML) etc. As rapid and effective methods for bioremediation of PAHs. With several pros and cons, biological treatments using microalgae are found to be better for PAH removal than any other conventional technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.140337 | DOI Listing |
Environ Epidemiol
October 2025
Department of Psychiatry and Behavioral Health, The Ohio State University, Ohio.
Background: Prospective studies suggest that prenatal exposure to chemical neurotoxicants and maternal stress increase risk for psychiatric problems. However, most studies have focused on childhood outcomes, leaving adolescence-a critical period for the emergence or worsening of psychiatric symptoms-relatively understudied. The complexity of prenatal coexposures and adolescent psychiatric comorbidities, particularly among structurally marginalized populations with high exposure burdens, remains poorly understood.
View Article and Find Full Text PDFInt J Environ Health Res
September 2025
Department of Epidemiology, School of Public Health, Shanxi Medical University, Jinzhong, China.
The mechanism underlying the effects of Polycyclic aromatic hydrocarbons (PAHs) on missed abortion (MA) remains unclear. This study explored the relationship between PAHs exposure, telomere length (TL), metabolizing enzyme gene polymorphism, and MA in a case-control study with 253 pregnant women. A competitive enzyme-linked immunosorbent assay (ELISA) was used to quantify PAH-DNA adducts.
View Article and Find Full Text PDFRecent Pat Biotechnol
August 2025
Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
Introduction: Polycyclic aromatic hydrocarbons (PAHs) are toxic petroleum byproducts in soil, exhibiting significant genotoxic properties. Microorganisms residing in contaminated soils serve as effective detoxifying agents. Among various strategies, bioremediation is an efficient biological method for detoxifying PAHs.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
December 2025
Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany.
Environ Res
September 2025
Institute of Environmental Medicine, Karolinska Institutet, Solnavägen 4, SE-113 65 Stockholm, SWEDEN.
Cardiovascular disease (CVD) is the leading cause of death in Europe, with myocardial infarction (MI) being one of its most severe manifestations. While many risk factors for CVD are well known, occupational exposures remain relatively understudied-especially in analyses that adjust for co-occurring workplace exposures. This study aimed to examine the association between occupational exposure to chemicals and particles and the risk of first-time MI.
View Article and Find Full Text PDF