98%
921
2 minutes
20
Eutrophication is a worldwide issue that can disrupt ecosystem processes in sediments. Studies have shown that macrofauna influences sediment processes by engineering environments that constrain microbial communities. Here, we explored the effect of different sizes of the Sydney cockle (Anadara trapezia), on bacterial and archaeal communities in natural and experimentally enriched sediments. A mesocosm experiment was conducted with two enrichment conditions (natural or enriched) and 5 cockle treatments (small, medium, large, mixed sizes and a control). This study was unable to detect A. trapezia effects on microbial communities irrespective of body size. However, a substantial decrease of bacterial richness, diversity, and structural and functional shifts, were seen with organic enrichment of sediments. Archaea were similarly changed although the magnitude of effect was less than for bacteria. Overall, we found evidence to suggest that A. trapezia had limited capacity to affect sediment microbial communities and mitigate the effects of organic enrichment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2023.115608 | DOI Listing |
Mar Pollut Bull
September 2025
Department of Ocean Engineering, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea. Electronic address:
Coastal sediments in semi-enclosed bays are particularly susceptible to contamination due to limited water circulation and ongoing contaminant input. In Masan Bay, a heavily impacted coastal area in Korea, sediment remediation is essential to alleviate the effects of organic enrichment and hypoxia. This study investigated the effectiveness of oyster shell capping as an in-situ remediation technique by assessing its impact on sediment environment, microbial communities, and macrobenthic fauna.
View Article and Find Full Text PDFJ Chromatogr A
September 2025
State Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China. Electronic address:
Rapid and convenient enrichment and detection of volatile cinnamaldehyde (Cin) from a common herbal medicine, cinnamon, was achieved through a reliable MSPE-HPLC-DAD approach. The magnetic porous carbon material (Carbon-FeC/lignin) used for MSPE was prepared as follows. First, the metal organic framework (MIL-101-NH (Fe)) was synthesized using the solvothermal method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
The aluminum electrolysis industry generates massive greenhouse gas emissions dominated by CO and perfluorocarbons (PFCs, CF/CF), presenting dual challenges of climate impact and resource waste. Here, we report a robust nickel-based metal-organic framework (SIFSIX-3-Ni) featuring confined square channels (3.55 Å) that achieves the molecular-sieving separation of CO from CF/CF mixtures.
View Article and Find Full Text PDFEnviron Pollut
September 2025
Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China. Electronic address:
Dissolved organic matter is the main precursor for the formation of halogenated disinfection by-products (X-DBPs) during the disinfection of drinking water. However, the majority of the X-DBPs identified based on the artificially prepared water using the Suwannee River Natural Organic Matter (SRNOM) will bias the assessment of X-DBP formation potential in actual natural water. Herein, the non-targeted analysis based on ultrahigh-resolution mass spectrometry was employed to reveal the discrepancy in the molecular composition of X-DBPs and their precursors in SRNOM solution and actual authentic samples during disinfection.
View Article and Find Full Text PDFWater Res
September 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China. Electronic address:
Freezing enhancing the photochemistry of dissolved organic matter (DOM), yet the mechanism of reactive intermediate (RIs) generation influenced by DOM property and structure remain elusive. Here, we demonstrate that freezing induces exceptional amplification of RIs, with steady-state concentrations in ice (-10 °C) surpassing aqueous solutions by 5-41 times. Laser scanning confocal microscopy first visualized cryo-concentration of DOM and RIs in liquid-like regions (LLR).
View Article and Find Full Text PDF