Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To see how the flow of energy across ecosystems can derive evolution, I introduce a framework in which individuals interact with their peers and environment to accumulate resources, and use the resources to pay for their metabolic costs, grow and reproduce. I show that two conservation principles determine the system's equilibrium state: conservation of resources- a physical principle stating that in the equilibrium, resource production and consumption should balance, and payoff equality- an economic principle, stating that the payoffs of different types in equilibrium should equal. Besides the equilibrium state, the system shows non-equilibrium fluctuations derived by the exponential growth of the individuals in which the payoff equality principle does not hold. A simple gradient-ascend dynamical mean-field equation predicts the onset of non-equilibrium fluctuations. As an example, I study the evolution of cooperation in public goods games. In both mixed and structured populations, cooperation evolves naturally in resource-poor environments but not in resource-rich environments. Population viscosity facilitates cooperation in poor environments but can be detrimental to cooperation in rich environments. In addition, cooperators and defectors show different life-history strategies: Cooperators live shorter lives and reproduce more than defectors. Both population structure and, more significantly, population viscosity reduce lifespan and life history differences between cooperators and defectors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553275PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0286922PLOS

Publication Analysis

Top Keywords

equilibrium state
8
principle stating
8
non-equilibrium fluctuations
8
population viscosity
8
cooperators defectors
8
evolution
4
evolution result
4
result resource
4
resource flow
4
flow ecosystems
4

Similar Publications

Ultrafast Correlation Energy Estimator.

J Phys Chem A

September 2025

Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland.

A virtually no-cost method is proposed that can compute the correlation energies of general, covalently bonded, organic, and inorganic molecules (including conjugated π-electron systems) with a well-defined dominant Lewis structure at the accuracy of 99.5% of the near-exact values determined by the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] in the complete-basis-set (CBS) limit. This Correlation Energy Per Bond (CEPB) method assigns a partial correlation energy to each bond type (characterized by the identities of the two atoms forming the bond and its integer bond order) and to a lone pair, regardless of the bond length, bond angle, sp-hybridization, π-electron conjugation, ionicity, noncovalent interactions, etc.

View Article and Find Full Text PDF

The coupling of lasers plays an important role in a variety of research activities, from generating high-power lasers to investigating out-of-equilibrium coupled systems. This Letter presents our investigations of Hermitian coupling in arrays of lasers, where it is possible to control both the amplitude and phase of the coupling and generate artificial gauge fields. The Hermitian coupling is demonstrated in three laser array geometries: a square array of 100 lasers with controlled laser coupling for obtaining continuous control over the phase-locked state, a triangular array of 130 lasers with controlled chirality of the lasers, and a ring array of eight lasers with a controlled topological charge.

View Article and Find Full Text PDF

Detecting Many-Body Scars from Fisher Zeros.

Phys Rev Lett

August 2025

East China Normal University, Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, Shanghai 200241, China.

The far-from-equilibrium dynamics of certain interacting quantum systems still defy precise understanding. One example is the so-called quantum many-body scars (QMBSs), where a set of energy eigenstates evade thermalization to give rise to long-lived oscillations. Despite the success of viewing scars from the perspectives of symmetry, commutant algebra, and quasiparticles, it remains a challenge to elucidate the mechanism underlying all QMBS and to distinguish them from other forms of ergodicity breaking.

View Article and Find Full Text PDF

Chiral Phonon-Induced Spin Transport via Microscopic Barnett Effect.

Phys Rev Lett

August 2025

Duke University, Thomas Lord Department of Mechanical Engineering and Materials Science, Durham, North Carolina 27708, USA.

Chiral phonons, which are characterized by rotational atomic motion, offer a unique mechanism for transferring angular momentum from phonons to electron spins and other angular momentum carriers. In this Letter, we present a theoretical investigation into the emergence of chiral phonons in a chiral hybrid organic-inorganic perovskite (HOIP) and their critical roles in rigid-body rotation, magnetic moment generation, and spin transport under nonthermal equilibrium conditions. We demonstrate that phonon angular momentum can modify the spin chemical potential via a proposed microscopic Barnett effect, leading to a spatially varying spin chemical potential at the metal/HOIP interface, which subsequently induces spin currents in an adjacent Cu layer, with a magnitude consistent with experimental observations.

View Article and Find Full Text PDF

We develop a model that integrates evolutionary matrix game theory with Mendelian genetics. Within this framework, we define the genotype dynamics that describes how the frequencies of genotypes change in sexual diploid populations. We show that our formal definition of evolutionary stability for genotype distributions implies the stability of the corresponding interior equilibrium point in the genotype dynamics.

View Article and Find Full Text PDF