98%
921
2 minutes
20
Background: Testicular volume (TV) is an essential parameter for monitoring testicular functions and pathologies. Nevertheless, current measurement tools, including orchidometers and ultrasonography, encounter challenges in obtaining accurate and personalized TV measurements.
Purpose: Based on magnetic resonance imaging (MRI), this study aimed to establish a deep learning model and evaluate its efficacy in segmenting the testes and measuring TV.
Materials And Methods: The study cohort consisted of retrospectively collected patient data ( = 200) and a prospectively collected dataset comprising 10 healthy volunteers. The retrospective dataset was divided into training and independent validation sets, with an 8:2 random distribution. Each of the 10 healthy volunteers underwent 5 scans (forming the testing dataset) to evaluate the measurement reproducibility. A ResUNet algorithm was applied to segment the testes. Volume of each testis was calculated by multiplying the voxel volume by the number of voxels. Manually determined masks by experts were used as ground truth to assess the performance of the deep learning model.
Results: The deep learning model achieved a mean Dice score of 0.926 ± 0.034 (0.921 ± 0.026 for the left testis and 0.926 ± 0.034 for the right testis) in the validation cohort and a mean Dice score of 0.922 ± 0.02 (0.931 ± 0.019 for the left testis and 0.932 ± 0.022 for the right testis) in the testing cohort. There was strong correlation between the manual and automated TV ( ranging from 0.974 to 0.987 in the validation cohort; R ranging from 0.936 to 0.973 in the testing cohort). The volume differences between the manual and automated measurements were 0.838 ± 0.991 (0.209 ± 0.665 for LTV and 0.630 ± 0.728 for RTV) in the validation cohort and 0.815 ± 0.824 (0.303 ± 0.664 for LTV and 0.511 ± 0.444 for RTV) in the testing cohort. Additionally, the deep-learning model exhibited excellent reproducibility (intraclass correlation >0.9) in determining TV.
Conclusion: The MRI-based deep learning model is an accurate and reliable tool for measuring TV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546058 | PMC |
http://dx.doi.org/10.3389/fmed.2023.1277535 | DOI Listing |
Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Computer Science, COMSATS University Islamabad, Sahiwal, Pakistan.
The widespread dissemination of fake news presents a critical challenge to the integrity of digital information and erodes public trust. This urgent problem necessitates the development of sophisticated and reliable automated detection mechanisms. This study addresses this gap by proposing a robust fake news detection framework centred on a transformer-based architecture.
View Article and Find Full Text PDFPLoS One
September 2025
College of Business Administration, Northern Border University (NBU), Arar, Kingdom of Saudi Arabia.
The increasing dependence on cloud computing as a cornerstone of modern technological infrastructures has introduced significant challenges in resource management. Traditional load-balancing techniques often prove inadequate in addressing cloud environments' dynamic and complex nature, resulting in suboptimal resource utilization and heightened operational costs. This paper presents a novel smart load-balancing strategy incorporating advanced techniques to mitigate these limitations.
View Article and Find Full Text PDFBioinformatics
September 2025
Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark.
Motivation: Representation learning has revolutionized sequence-based prediction of protein function and subcellular localization. Protein networks are an important source of information complementary to sequences, but the use of protein networks has proven to be challenging in the context of machine learning, especially in a cross-species setting.
Results: We leveraged the STRING database of protein networks and orthology relations for 1,322 eukaryotes to generate network-based cross-species protein embeddings.
IEEE Trans Biomed Eng
September 2025
Objective: Diffusion magnetic resonance imaging (dMRI) often suffers from low spatial and angular resolution due to inherent limitations in imaging hardware and system noise, adversely affecting the accurate estimation of microstructural parameters with fine anatomical details. Deep learning-based super-resolution techniques have shown promise in enhancing dMRI resolution without increasing acquisition time. However, most existing methods are confined to either spatial or angular super-resolution, disrupting the information exchange between the two domains and limiting their effectiveness in capturing detailed microstructural features.
View Article and Find Full Text PDF