98%
921
2 minutes
20
Clonal evolution drives cancer progression and therapeutic resistance. Recent studies have revealed divergent longitudinal trajectories in gliomas, but early molecular features steering posttreatment cancer evolution remain unclear. Here, we collected sequencing and clinical data of initial-recurrent tumor pairs from 544 adult diffuse gliomas and performed multivariate analysis to identify early molecular predictors of tumor evolution in three diffuse glioma subtypes. We found that deletion at initial diagnosis preceded tumor necrosis and microvascular proliferation that occur at later stages of IDH-mutant glioma. Ki67 expression at diagnosis was positively correlated with acquiring hypermutation at recurrence in the IDH-wild-type glioma. In all glioma subtypes, gain or target activation at diagnosis was associated with treatment-induced hypermutation at recurrence. To predict glioma evolution, we constructed CELLO2 (Cancer EvoLution for LOngitudinal data version 2), a machine learning model integrating features at diagnosis to forecast hypermutation and progression after treatment. CELLO2 successfully stratified patients into subgroups with distinct prognoses and identified a high-risk patient group featured by gain with worse post-progression survival, from the low-grade IDH-mutant-noncodel subtype. We then performed chronic temozolomide-induction experiments in glioma cell lines and isogenic patient-derived gliomaspheres and demonstrated that MYC drives temozolomide resistance by promoting hypermutation. Mechanistically, we demonstrated that, by binding to open chromatin and transcriptionally active genomic regions, c-MYC increases the vulnerability of key mismatch repair genes to treatment-induced mutagenesis, thus triggering hypermutation. This study reveals early predictors of cancer evolution under therapy and provides a resource for precision oncology targeting cancer dynamics in diffuse gliomas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scitranslmed.adh4181 | DOI Listing |
Nat Genet
September 2025
Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
Aberrant DNA methylation has been described in nearly all human cancers, yet its interplay with genomic alterations during tumor evolution is poorly understood. To explore this, we performed reduced representation bisulfite sequencing on 217 tumor and matched normal regions from 59 patients with non-small cell lung cancer from the TRACERx study to deconvolve tumor methylation. We developed two metrics for integrative evolutionary analysis with DNA and RNA sequencing data.
View Article and Find Full Text PDFNature
September 2025
Centre for Evolution and Cancer, Institute of Cancer Research, London, UK.
Cancer development and response to treatment are evolutionary processes, but characterizing evolutionary dynamics at a clinically meaningful scale has remained challenging. Here we develop a new methodology called EVOFLUx, based on natural DNA methylation barcodes fluctuating over time, that quantitatively infers evolutionary dynamics using only a bulk tumour methylation profile as input. We apply EVOFLUx to 1,976 well-characterized lymphoid cancer samples spanning a broad spectrum of diseases and show that initial tumour growth rate, malignancy age and epimutation rates vary by orders of magnitude across disease types.
View Article and Find Full Text PDFBiotechnol Adv
September 2025
Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, China Jiliang University, Hangzhou 310018, China. Electronic address:
Nanopore direct RNA sequencing (DRS) is a transformative technology that enables full-length, single-molecule sequencing of native RNA, capturing transcript isoforms and preserving epitranscriptomic modifications without cDNA conversion. This review outlines key advances in DRS, including optimized protocols for mRNA, rRNA, tRNA, circRNA, and viral RNA, as well as analytical tools for isoform quantification, poly(A) tail measurement, fusion transcript identification, and base modification profiling. We highlight how DRS has redefined transcriptomic studies across diverse systems-from uncovering novel transcripts and alternative splicing events in cancer, plants, and parasites to enabling the direct detection of m6A, m5C, pseudouridine, and RNA editing events.
View Article and Find Full Text PDFJ Bras Pneumol
September 2025
. Rede D'Or, São Paulo (SP), Brasil.