Theoretical calculations and experimental investigation toward the π-conjugated modulation in arylamine derivative-based hole transporting materials for perovskite solar cells.

Phys Chem Chem Phys

Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Excellent hole transporting materials (HTMs) are beneficial to promote the performance of perovskite solar cells (PSCs). Herein, starting from the modulation of the π-conjugated groups of carbazole-diphenylamine derivatives, HTMs CY1 and CY2 were designed and investigated using density functional theory and Marcus theory. Theoretical simulations show that CY1 and CY2 exhibit appropriate HOMO/LUMO energy levels, small recombination energy, good optical properties and molecular stability. Compared with CY1, CY2 with a larger π-conjugated group on its side chain can yield a higher hole mobility and better charge separation. The experimental results confirm that CY2 in PSCs exhibits superior properties such as good hole transporting ability, good film morphology, and efficient charge extraction and dissociation at perovskite/HTM inerfaces. Therefore, a PSC device with CY2 yields a higher efficiency than those of CY1- and Spiro-OMeTAD-based devices. Hence, the results demonstrate that the strategy of the extended π-π conjugation on a side chain is a practicable approach to design potential HTMs for application in PSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp03409gDOI Listing

Publication Analysis

Top Keywords

hole transporting
12
cy1 cy2
12
transporting materials
8
perovskite solar
8
solar cells
8
side chain
8
cy2
5
theoretical calculations
4
calculations experimental
4
experimental investigation
4

Similar Publications

Pax-5a gene, as a nucleic acid biomarker closely associated with B-cell acute lymphoblastic leukemia (B-ALL), holds significant potential for early disease diagnosis. In this study, we developed a highly accurate and efficient "on-super on-off" photoelectrochemical (PEC) biosensor based on a dual-photoelectrode heterojunction system integrated with a multisphere cascade DNA amplification strategy. The designed heterojunction dual-photoelectrode platform, comprising a InO/CdS photoanode (on state) and an in situ-formed MIL-68(In)/InO (MIO) photocathode, effectively extends the electron-hole transport pathway, enhances photogenerated charge separation, and produces high-amplitude signal output (super on state), thereby providing a robust baseline for signal transduction.

View Article and Find Full Text PDF

A potential replacement that alleviates the shortcomings of the dominant light absorber materials used in solar photovoltaics has been synthesized, and its microstructural, electronic structure, and optical properties have been investigated. KCuS crystals were synthesized by the carbonate method. Transmission electron microscopy (TEM) established [010] as the growth direction of the needle-like monoclinic crystals.

View Article and Find Full Text PDF

Molecular Hybrid Bridging for Efficient and Stable Inverted Perovskite Solar Cells without a Pre-Deposited Hole Transporting Layer.

Adv Mater

September 2025

Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.

Establishing a low-resistance perovskite/ITO contact using self-assembled molecules (SAMs) is crucial for efficient hole transport in perovskite solar cells (PSCs) without a pre-deposited hole-transporting layer. However, SAMs at the buried interface often encounter issues like nonuniform distribution and molecular aggregation during the extrusion process, leading to significant energy loss. Herein, a molecular hybrid bridging strategy by incorporating a novel small molecule is proposed, (2-aminothiazole-4-yl)acetic acid (ATAA), featuring a thiazole ring and carboxylic acid group, along with the commonly used SAM, 4-(2,7-dibromo-9,9-dimethylacridin-10(9H)-yl)butyl)phosphonic acid (DMAcPA), into the perovskite precursor to synergistically optimize the buried interface.

View Article and Find Full Text PDF

Perovskite solar cells (PSCs) are rapidly advancing due to their high power conversion efficiencies (PCEs) and low fabrication costs. However, their commercialization is hindered by lead toxicity and the use of expensive materials, such as Spiro-OMeTAD and gold electrodes. This study presents a comprehensive SCAPS-1D simulation-based analysis of 14 perovskite absorber materials, spanning both Pb-based and lead-free compounds, under a unified device architecture using low-cost, nontoxic components: ZnO as the electron transport material (ETM), PEDOT:PSS + WO as a dual hole transport material, and nickel as the back contact.

View Article and Find Full Text PDF

Bifunctional integration of indoor organic photovoltaics (OPVs) and photodetectors (OPDs) faces fundamental challenges because of incompatible interfacial thermodynamics: indoor OPVs require unimpeded charge extraction under low-light conditions (200-1000 lx), whereas OPDs require stringent suppression of noise current. Conventional hole transport layers (HTLs) fail to satisfy these opposing charge-dynamic requirements concurrently with commercial practicality (large-area uniformity, photostability, and cost-effective manufacturability). This study introduces benzene-phosphonic acid (BPA)-a minimalist self-assembled monolayer (SAM)-based HTL with a benzene core and phosphonic acid anchoring group-enabling cost-effective synthesis and excellent ITO interfacial properties such as energy alignment, uniform monolayer, and stability.

View Article and Find Full Text PDF