Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

5-Hydroxymethylfurfural (5-HMF) synthesized through glucose conversion requires Lewis acid (L) site for isomerization and Brønsted acid (B) site for dehydration. The objective of this work is to investigate the influence of the metal type of Al-SBA-15-supported phosphates of Cr, Zr, Nb, Sr, and Sn on glucose conversion to 5-HMF in a NaCl-H O/n-butanol biphasic solvent system. The structural and acid property of all supported metal phosphate samples were fully verified by several spectroscopic methods. Among those catalysts, CrPO/Al-SBA-15 provided the best performance with the highest glucose conversion and 5-HMF yield, corresponding to the highest total acidity of 0.65 mmol/g and optimal L/B ratio of 1.88. For CrPO/Al-SBA-15, another critical parameter is the phosphate-to-chromium ratio. Moreover, DFT simulation of glucose conversion to 5-HMF on the surface of the optimized chromium phosphate structure reveals three steps of fructose dehydration on the Brønsted acid site. Finally, the optimum reaction condition, reusability, and leaching test of the best catalyst were determined. CrPO/Al-SBA-15 is a promising catalyst for glucose conversion to high-value-added chemicals in future biorefinery production.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.202300326DOI Listing

Publication Analysis

Top Keywords

glucose conversion
20
acid site
12
conversion 5-hmf
12
brønsted acid
8
glucose
6
conversion
5
unraveling structural
4
structural acidic
4
acidic properties
4
properties al-sba-15-supported
4

Similar Publications

This comprehensive review examines the versatile applications and effects of Moringa oleifera across multiple fish species in aquaculture systems amid growing challenges of rising feed costs and antimicrobial resistance. M. oleifera, commonly called the Miracle tree, contains an exceptional nutritional profile with high protein content (22.

View Article and Find Full Text PDF

is a human fungal pathogen that survives and proliferates within phagocytic immune cells. To sustain growth in the nutrient-limited phagosome environment, the pathogenic yeast scavenges available carbon sources, which must be metabolized through central carbon metabolism for respiration and biomass synthesis. However, carbon metabolic pathways operating in the pathogenic yeast phase have not been extensively mapped.

View Article and Find Full Text PDF

A thermostable Cas9-based genome editing system for thermophilic acetogenic bacterium .

Appl Environ Microbiol

September 2025

Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China.

is a thermophilic acetogenic bacterium capable of thriving at elevated temperatures up to 66°C. It metabolizes carbohydrates such as glucose, mannose, and fructose and can also grow lithotrophically utilizing hydrogen (H) and carbon dioxide (CO) or carbon monoxide (CO), with acetate serving as its main product. A simple and efficient genome editing system for would not only facilitate the understanding of the physiological function of enzymes involved in energy and carbon metabolism but also enable metabolic engineering.

View Article and Find Full Text PDF

Cotton stalk (CTS) and corn stover (CRS) were pretreated using solid alkali (NaOH or Ca(OH)) assisted ball milling (BM). The physicochemical properties of the pretreated materials and their high-solid enzymatic hydrolysis performance were systematically investigated. The interaction between alkali and straw was synergistically enhanced by mechanical force generated during BM, achieving effective lignin removal.

View Article and Find Full Text PDF

Ruminants rely on hepatic gluconeogenesis to support whole-body glucose metabolism and to supply glucose for lactose synthesis. Understanding the effect of plane of nutrition before parturition on the capacity for hepatic gluconeogenesis in dairy cows may provide a basis for improved cow health and productivity in the subsequent lactation. Our objectives were to determine the effects of far-off (FO) dry period diet, close-up (CU) period diet, and their interaction on adaptations in metabolism of gluconeogenic substrates (Ala and propionate) in liver slices.

View Article and Find Full Text PDF