Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intercalation is the process of inserting chemical species into the heterointerfaces of two-dimensional (2D) layered materials. While much research has focused on the intercalation of metals and small gas molecules into graphene, the intercalation of larger molecules through the basal plane of graphene remains challenging. In this work, we present a new mechanism for intercalating large molecules through monolayer graphene to form confined oxide materials at the graphene-substrate heterointerface. We investigate the intercalation of phosphorus pentoxide (PO) molecules directly from the vapor phase and confirm the formation of confined PO at the graphene-substrate heterointerface using various techniques. Density functional theory (DFT) corroborates the experimental results and reveals the intercalation mechanism, whereby PO dissociates into small fragments catalyzed by defects in the graphene that then permeates through lattice defects and reacts at the heterointerface to form PO. This process can also be used to form new confined metal phosphates (e.g., 2D InPO). While the focus of this study is on PO intercalation, the possibility of intercalation from predissociated molecules catalyzed by defects in graphene may exist for other types of molecules as well. This in-depth study advances our understanding of intercalation routes of large molecules via the basal plane of graphene as well as heterointerface chemical reactions leading to the formation of distinctive confined complex oxide compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571006PMC
http://dx.doi.org/10.1021/acsami.3c07763DOI Listing

Publication Analysis

Top Keywords

intercalation
9
molecules basal
8
basal plane
8
plane graphene
8
large molecules
8
form confined
8
graphene-substrate heterointerface
8
catalyzed defects
8
defects graphene
8
molecules
7

Similar Publications

Objective: The objective of this work is to investigate different sunscreens and Viscogel group organoclays for the preparation of new intercalated sunscreens to improve the effectiveness and safety in photoprotection using new approach methodology (NAMs).

Methods: For this study, we examined Diethylamino hydroxybenzoyl hexyl benzoate (DHHB), octyl methoxycinnamate (OMC), Bemotrizinol (BEMT) and Viscogel S4®, S7®, and B8® using a set of Saccharomyces cerevisiae mutant strains that are sensitive to UVA, UVB and Solar Simulated Light (SSL) to evaluate their photoprotective and mutagenic potential. Additionally, we developed delaminated nanocomposites by chemical intercalation reactions followed by ultrasonic treatment to enhance clay exfoliation.

View Article and Find Full Text PDF

The lattice oxygen mechanism (LOM) of the oxygen evolution reaction (OER) offers significant kinetic advantages over the adsorbed oxygen mechanism. Anion intercalation induces the LOM in NiOOH by enhancing the covalency of lattice oxygen through the modulation of the metal-oxygen electronic state. The relationships between doping mechanisms, such as the size and valence state of anions and the kinetics of the OER, have been clarified.

View Article and Find Full Text PDF

Van der Waals (vdW) layered materials have gained significant attention owing to their distinctive structure and unique properties. The weak interlayer bonding in vdW layered materials enables guest atom intercalation, allowing precise tuning of their physical and chemical properties. In this work, a ternary compound, NiInSe (x = 0-0.

View Article and Find Full Text PDF

Herein, 1,3,5-benzenetricarboxylate (BTC) intercalation and oxygen vacancy engineering are proposed to enhance the electrochemical performance of layered double hydroxide (LDH) nanosheets. The optimized LDH exhibits a remarkable capacity of 426 mAh g at 3 A g and 70% capacity retention after 15 000 cycles, attributed to improved ion transport, abundant active sites, and structural stability.

View Article and Find Full Text PDF

On-Target Photoassembly of Pyronin Dyes for Super-Resolution Microscopy.

Angew Chem Int Ed Engl

September 2025

Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany.

Controlled photoactivation is an auspicious and emerging approach in super-resolution microscopy, offering virtually zero background signal from the marker prior to activation. Pyronins are well-established fluorophores, but due to their inherent intercalating tendency towards nucleic acids, their use has been mostly avoided in super-resolution microscopy. Here, we describe a new class of diaryl ether and diaryl silane molecules that upon photoactivation close into fluorescent (silicon-)pyronins and term them Pyronin Upon Light Irradiation (PULI).

View Article and Find Full Text PDF