98%
921
2 minutes
20
Layered tetrahedral network melilite is a promising structural family of fast ion conductors that exhibits the flexibility required to accommodate interstitial oxide anions, leading to excellent ionic transport properties at moderate temperatures. Here, we present a combined experimental and computational magic angle spinning (MAS) nuclear magnetic resonance (NMR) approach which aims at elucidating the local configurational disorder and oxide ion diffusion mechanism in a key member of this structural family possessing the LaSrGaO composition. O and Ga MAS NMR spectra display complex spectral line shapes that could be accurately predicted using a computational ensemble-based approach to model site disorder across multiple cationic and anionic sites, thereby enabling the assignment of bridging/nonbridging oxygens and the identification of distinct gallium coordination environments. The O and Ga MAS NMR spectra of LaSrGaO display additional features not observed for the parent LaSrGaO phase which are attributed to interstitial oxide ions incorporated upon cation doping and stabilized by the formation of five-coordinate Ga centers conferring framework flexibility. O high-temperature (HT) MAS NMR experiments capture exchange within the bridging oxygens at 130 °C and reveal coalescence of all oxygen signals in LaSrGaO at approximately 300 °C, indicative of the participation of both interstitial and framework oxide ions in the transport process. These results further supported by the coalescence of the Ga resonances in the Ga HT MAS NMR spectra of LaSrGaO unequivocally provide evidence of the conduction mechanism in this melilite phase and highlight the potential of MAS NMR spectroscopy to enhance the understanding of ionic motion in solid electrolytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571088 | PMC |
http://dx.doi.org/10.1021/jacs.3c04821 | DOI Listing |
J Am Chem Soc
September 2025
Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.
Among the different types of HIV-1 maturation inhibitors, those that stabilize the junction between the capsid protein C-terminal domain (CA) and the spacer peptide 1 (SP1) within the immature Gag lattice are promising candidates for antiretroviral therapies. Here, we report the atomic-resolution structure of CA-SP1 assemblies with the small-molecule maturation inhibitor PF-46396 and the assembly cofactor inositol hexakisphosphate (IP6), determined by magic angle spinning (MAS) NMR spectroscopy. Our results reveal that although the two PF-46396 enantiomers exhibit distinct binding modes, they both possess similar anti-HIV potency.
View Article and Find Full Text PDFMagn Reson Lett
May 2025
State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
Supercapacitors, comprising electrical double-layer capacitors (EDLCs) and pseudocapacitors, are widely acknowledged as high-power energy storage devices. However, their local structures and fundamental mechanisms remain poorly understood, and suitable experimental techniques for investigation are also lacking. Recently, nuclear magnetic resonance (NMR) has emerged as a powerful tool for addressing these fundamental issues with high local sensitivity and non-invasiveness.
View Article and Find Full Text PDFMagn Reson Lett
November 2024
Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, UMR 7574, 75005 Paris, France.
Elastomer blends, among which natural rubber (NR) and butadiene rubber (BR), are involved in many components of the automotive/tire industry. A comprehensive understanding of their mechanical behavior requires, among other features, a detailed description of the cross-link density in these mixtures. In the case of vulcanized immiscible blends, the distribution of the cross-link density within each of the NR- and BR-rich domains is key information, but difficult to determine using the conventional approaches used for one-component cross-linked elastomers.
View Article and Find Full Text PDFAnal Chem
September 2025
Embrapa Instrumentation, Rua XV de Novembro 1452, São Carlos, São Paulo 13560-970, Brazil.
Chocolates and other cocoa products represent a multibillion-dollar industry that has faced significant price increases, largely due to a surge in cocoa plant diseases linked to climate change. One potential solution for mitigating cocoa prices involves the use of cocoa butter equivalents, substitutes, or replacers. Consequently, a rapid method for simultaneously determining multiple properties of cocoa derivatives can serve as a valuable tool for research and development of new products, quality control, and regulatory agencies to ensure compliance with cocoa product standards.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
The thermodynamic equilibrium assumption often invoked in modeling ion migration in solid-state materials remains insufficient to capture the true migration behavior of Li ions, particularly in less-crystalline superionic conductors that exhibit anomalously high Li ion conductivity. Such materials challenge classical frameworks and necessitate a lattice dynamics-based perspective that explicitly accounts for nonequilibrium phonon interactions and transient structural responses. Here, we uncover a phonon-governed Li ion migration mechanism in garnet-structured superionic conductors by comparing Ta-doped LiLaZrTaO (LLZTO4) to its undoped analogue, LiLaZrAlO (LLZO).
View Article and Find Full Text PDF