Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Observable morphological traits are widely employed in plant phenotyping for breeding use, which are often the external phenotypes driven by a chain of functional actions in plants. Identifying and phenotyping inherently functional traits for crop improvement toward high yields or adaptation to harsh environments remains a major challenge. Prediction of whole-plant performance in functional-structural plant models (FSPMs) is driven by plant growth algorithms based on organ scale wrapped up with micro-environments. In particular, the models are flexible for scaling down or up through specific functions at the organ nexus, allowing the prediction of crop system behaviors from the genome to the field. As such, by virtue of FSPMs, model parameters that determine organogenesis, development, biomass production, allocation, and morphogenesis from a molecular to the whole plant level can be profiled systematically and made readily available for phenotyping. FSPMs can provide rich functional traits representing biological regulatory mechanisms at various scales in a dynamic system, e.g., Rubisco carboxylation rate, mesophyll conductance, specific leaf nitrogen, radiation use efficiency, and source-sink ratio apart from morphological traits. High-throughput phenotyping such traits is also discussed, which provides an unprecedented opportunity to evolve FSPMs. This will accelerate the co-evolution of FSPMs and plant phenomics, and thus improving breeding efficiency. To expand the great promise of FSPMs in crop science, FSPMs still need more effort in multiscale, mechanistic, reproductive organ, and root system modeling. In summary, this study demonstrates that FSPMs are invaluable tools in guiding functional trait phenotyping at various scales and can thus provide abundant functional targets for phenotyping toward crop improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538623PMC
http://dx.doi.org/10.34133/plantphenomics.0091DOI Listing

Publication Analysis

Top Keywords

plant phenotyping
8
morphological traits
8
functional traits
8
crop improvement
8
fspms
8
plant
7
phenotyping
7
functional
6
traits
5
crop/plant modeling
4

Similar Publications

Climatic challenges increasingly threaten global food security, necessitating crops with enhanced multi-stress resilience. Through systematic transcriptomic analysis of 100 wheat genotypes under heat, drought, cold, and salt stress, we identified 3237 differentially expressed genes (DEGs) enriched in key stress-response pathways. Core transcription factors (, , ) and two functional modules governing abiotic tolerance were characterized.

View Article and Find Full Text PDF

Premise: Floral pigments primarily serve to attract pollinators through color display and also contribute to protection against environmental stress. Although pigment composition can be plastically altered under stress, its impact on pollinator color perception remains poorly understood. Moricandia arvensis (Brassicaceae) exhibits seasonal floral dimorphism, with lilac spring flowers and white summer flowers.

View Article and Find Full Text PDF

Potato bolters are caused by excision of a transposon from the StCDF1.3 allele, resulting in a somatic mutant with late maturity. Somatic mutations during vegetative propagation can lead to novel genotypes, known as sports.

View Article and Find Full Text PDF

Hybrid breeding based on male sterility requires the removal of male parents, which is time- and labor-intensive; however, the use of female sterile male parent can solve this problem. In the offspring of distant hybridization between Brassica oleracea and Brassica napus, we obtained a mutant, 5GH12-279, which not only fails to generate gynoecium (thereby causing female sterility) but also has serrated leaves that could be used as a phenotypic marker in seedling screening. Genetic analysis revealed that this trait was controlled by a single dominant gene.

View Article and Find Full Text PDF

CETN3 deficiency induces microcephaly by disrupting neural stem/progenitor cell fate through impaired centrosome assembly and RNA splicing.

EMBO Mol Med

September 2025

Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li

Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.

View Article and Find Full Text PDF