98%
921
2 minutes
20
The degradation of a mixture of ibuprofen, naproxen, and diclofenac in various effluents by UVC/HO or UVC/SO was studied to assess the impact of the matrix composition and of the oxidant precursor on process efficiency. Experiments were carried out in a 20-L laboratory pilot (a scaled-down version of a full-scale pilot). In effluents collected during dry weather, the rural constructed wetland effluent allowed faster degradation than the urban conventional WWTP effluent, regardless of the nature of the targets or of the oxidant precursor. This was mainly attributed to a three-times higher chemical oxygen demand in the urban effluent, likely to quench the oxidative species. UV fluences to reach 90% degradation of the three compounds were 3,800 and 5,500 mJ cm in the rural effluent, whereas they were 6,600 and 6,100 mJ cm in the urban effluent with HO and SO, respectively. After a rainfall event, the rural effluent composition was not significantly affected compared to that of the urban effluent that underwent the dilution effect. Therefore, the stability of the rural effluent composition allowed comparable degradation efficiency, whereas the dilution effect led to a significant increase in the degradation rate constants in the urban effluent (up to four times higher).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2023.287 | DOI Listing |
Environ Monit Assess
September 2025
School of Materials Engineering, Changzhou Vocational Institute of Industry Technology, Changzhou, 213000, People's Republic of China.
A multi-indicator framework was developed to resolve multi-source pollution in highly urbanized rivers, demonstrated in the Qinhuai River Basin, Nanjing, China. Water quality index (WQI) stratification was integrated with dissolved organic matter (DOM) fluorescence components, hydrochemical ions, and conventional parameters and analyzed using positive matrix factorization (PMF). Correlation analysis further elucidated source compositions and interactions.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
A novel vacuum ultraviolet (VUV)-activated sodium percarbonate (SPC) system (VUV/SPC) was developed for efficient degradation of micropollutants such as phenol. The VUV/SPC system achieved 98.4 % phenol removal within 3 min, with pseudo-first-order rate constants 4.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Department of Science and Environmental Studies, The Education University of Hong Kong, New Territories, Hong Kong; State Key Laboratory of Marine Environmental Health, City University of Hong Kong, Kowloon, Hong Kong. Electronic address:
Climate change and anthropogenic pressures alter phytoplankton phenology, distribution, and bloom frequency. Healthy phytoplankton communities are crucial for biogeochemical processes, blue carbon sequestration, and climate change mitigation. By employing high-throughput 18S V4 rRNA metabarcoding, we addressed the need for profiling phytoplankton community and response mechanisms in urbanized coastal ecosystems.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.
Unlabelled: Although wastewater treatment plants harbor many pathogens, traditional methods that monitor the microbial quality of surface water and wastewater have not changed since the early 1900s and often disregard the presence of other types of significant waterborne pathogens such as viruses. We used metagenomics and quantitative PCR to assess the taxonomy, functional profiling, and seasonal patterns of DNA and RNA viruses, including the virome distribution in aquatic environments receiving wastewater discharges. Environmental water samples were collected at 11 locations in Winnipeg, Manitoba, along the Red and Assiniboine rivers during the Spring, Summer, and Fall 2021.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan.
Odor problems in treated municipal wastewater are a concern, yet the sources and formation dynamics of these compounds within sewerage systems remain unclear. 2,4,6-trichloroanisole (2,4,6-TCA) is a key odorant in the effluents of municipal wastewater treatment plants (WWTPs). This study investigates the formation of 2,4,6-TCA through the conversion of its precursor, 2,4,6-trichlorophenol (2,4,6-TCP).
View Article and Find Full Text PDF