Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Several existing studies have revealed that the occurrence of lichen planus (LP) is relevant to the gut microbiota, and the causal relationship between gut microbiota and LP was analyzed using the Mendelian randomization (MR) method.

Methods: Through the two-sample MR method, single nucleotide polymorphisms (SNPs) relevant to gut microbiota were selected as instrument variables (IVs) to evaluate the causal association between gut microbiota and the risk of LP.

Results: According to the selection criteria of inverse-variance weighted (IVW), six bacterial genera were found to be significantly linked to the initiation of LP; The IVW results suggested that Oxalobacteraceae, Victivallaceae, and Actinobacteria could restrain the initiation of LP, showing protective effects against LP. Desulfovibrio, Veillonella, and Ruminococcus gauvreauii groups were demonstrated to have casual correlations with the onset of LP.

Conclusion: The relationship between gut microbiota and LP was not a single positive or inverse relationship. Investigation of the causal relationship of these gut microbiota with LP could further provide evidence for the intestine-skin axis theory. However, the specific mechanism of microorganisms affecting the skin remains to be clarified. In this paper, the protective effects and mechanisms of Oxalobacteraceae, Victivallaceae, and Actinobacteria on LP require further exploration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521728PMC
http://dx.doi.org/10.3389/fimmu.2023.1235982DOI Listing

Publication Analysis

Top Keywords

gut microbiota
28
relationship gut
12
lichen planus
8
mendelian randomization
8
relevant gut
8
causal relationship
8
oxalobacteraceae victivallaceae
8
victivallaceae actinobacteria
8
protective effects
8
microbiota
7

Similar Publications

Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.

View Article and Find Full Text PDF

This study investigated the impact of dietary zeolite supplementation on growth, cecal microbiota and digesta viscosity, digestive enzymes, carcass traits, blood constituents, and antioxidant parameters of broilers. A completely randomized design was used with 240 one-day-old broiler chicks randomly assigned to three dietary treatments (0%, 1.5%, and 3% zeolite as a feed additive) with four replicates of 20 chicks each.

View Article and Find Full Text PDF

The ketogenic diet (KD), a high-fat, low-carbohydrate regimen, has been shown to exert neuroprotective effects in various neurological models. This study explored how KD-alone or combined with antibiotic-induced gut microbiota depletion-affects cognition and neuroinflammation in aging. Thirty-two male rats (22 months old) were assigned to four groups (n = 8): control diet (CD), ketogenic diet (KD), antibiotics with control diet (AB), and antibiotics with KD (KDAB).

View Article and Find Full Text PDF

Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, has become a significant contaminant in aquatic environments due to its extensive use and incomplete metabolism. This review comprehensively analyses CIP pollution, including its sources, environmental and health impacts, and removal strategies. Chemical methods such as advanced oxidation processes and physical techniques like adsorption are evaluated for their efficiency in CIP removal.

View Article and Find Full Text PDF

The multi-kingdom cancer microbiome.

Nat Microbiol

September 2025

Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA.

Microbial influence on cancer development and therapeutic response is a growing area of cancer research. Although it is known that microorganisms can colonize certain tissues and contribute to tumour initiation, the use of deep sequencing technologies and computational pipelines has led to reports of multi-kingdom microbial communities in a growing list of cancer types. This has prompted discussions on the role and scope of microbial presence in cancer, while raising the possibility of microbiome-based diagnostic, prognostic and therapeutic tools.

View Article and Find Full Text PDF