Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An increasingly common ailment in elderly persons is Alzheimer's disease (AD), a neurodegenerative illness. Present treatment is restricted to alleviating symptoms; hence, there is a requirement to develop an effective approach to AD treatment. (SF) is a medicinal plant with a documented neuroprotective potential. To identify extracts of increased neuroprotectivity, we partitioned the methanolic extract of SF aerial parts from Greece into several fractions, by employing solvents of different polarities. The fractions were chemically identified and evaluated for their antioxidancy and anti-neurotoxic potential against amyloid beta peptides 25-35 (Aβ). Carnosol and carnosic acid were among the prominent compounds, while all partitions showed significant antioxidant capacity, with the diethyl ether and ethyl acetate partitions being the most potent. These, along with the aqueous and the butanolic fractions, demonstrated statistically significant anti-neurotoxic potential. Thus, our findings further validate the neuroprotective potential of SF and support its ethnopharmacological usage as an antioxidant. The particular properties found define SF as a promising source for obtaining extracts or bioactive compounds, possibly beneficial for generating AD-related functional foods or medications. Finally, our results encourage plant extract partitioning for acquiring fractions of enhanced biological properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535607PMC
http://dx.doi.org/10.3390/plants12183191DOI Listing

Publication Analysis

Top Keywords

neuroprotective potential
8
anti-neurotoxic potential
8
chemical profiling
4
profiling antioxidant
4
antioxidant anti-amyloid
4
anti-amyloid capacities
4
capacities extracts
4
extracts greece
4
greece increasingly
4
increasingly common
4

Similar Publications

Functional analysis of secreted tissue inhibitor of metalloproteinases-1 from adult human neural stem cells (ahNSCs) for regeneration and neuroprotection.

BMB Rep

September 2025

Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517; Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419; Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351; Department of Health

The adult human neural stem cell (ahNSC)-conditioned medium (CM) contains various secreted factors that promote tissue repair and neuroprotection. This study aimed to identify the key secreted proteins in ahNSC-CM and investigate the role of tissue inhibitor of metalloproteinases-1 (TIMP-1) in wound healing, angiogenesis, and neuroprotection against oxygenglucose deprivation. Cytokine array and liquid chromatography- tandem mass spectrometry analysis of ahNSC-CM revealed that monocyte chemoattractant protein-1 (MCP-1) and TIMP-1 were highly abundant.

View Article and Find Full Text PDF

Objective: Traumatic brain injury (TBI), a prevalent neurological disorder worldwide, is marked by varying degrees of neurological dysfunction. A key contributor to secondary damage and impediments in the repair process is the unregulated activation of microglia, which triggers neuroinflammation. Emerging evidence highlights the therapeutic potential of transcranial pulsed current stimulation (tPCS) in mitigating neurological deficits.

View Article and Find Full Text PDF

Purpose: Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting toxicity associated with oxaliplatin-based chemotherapy in gastric cancer patients. Recent studies suggest that high-dose intravenous selenium may exert neuroprotective effects in patients receiving platinum-based chemotherapy.

Methods: This pilot study analyzed patients with stage III gastric adenocarcinoma who underwent gastrectomy between January and December 2024.

View Article and Find Full Text PDF

Neuroavailable peptides from hempseed protein hydrolysates reduce hippocampal inflammation and glial activation in a scopolamine-induced Alzheimer's disease.

Biomed Pharmacother

September 2025

Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain. Electronic address:

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive impairment, synaptic dysfunction, and neuronal loss. Neuroinflammation, driven by the activation of microglia and astrocytes, is a key contributor to AD pathology, amplifying oxidative stress and amyloid-β toxicity. Modulation of neuroinflammatory pathways thus represents a promising therapeutic strategy.

View Article and Find Full Text PDF

The GPR120 agonist TUG-891 mitigates ischemic brain injury by attenuating endoplasmic reticulum stress and apoptosis via the PI3K/AKT signaling pathway.

Neurotherapeutics

September 2025

Department of Neurology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, 100191, China; Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking Universit

Extensive research has confirmed that omega-3 fatty acids provide cardiovascular protection primarily by activating the G protein-coupled receptor 120 (GPR120) signaling pathway. However, natural activators of this receptor often lack sufficient strength and precision. TUG-891, a recently synthesized selective GPR120 activator, has displayed significant therapeutic potential in multiple disease.

View Article and Find Full Text PDF