Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rice ( L.) is one of the world's most crucial food crops, as it currently supports more than half of the world's population. However, the presence of sheath blight (SB) caused by has become a significant issue for rice agriculture. This disease is responsible for causing severe yield losses each year and is a threat to global food security. The breeding of SB-resistant rice varieties requires a thorough understanding of the molecular mechanisms involved and the exploration of immune genes in rice. To this end, we conducted a screening of rice cultivars for resistance to SB and compared the transcriptome based on RNA-seq between the most tolerant and susceptible cultivars. Our study revealed significant transcriptomic differences between the tolerant cultivar ZhengDao 22 (ZD) and the most susceptible cultivar XinZhi No.1 (XZ) in response to invasion. Specifically, the tolerant cultivar showed 7066 differentially expressed genes (DEGs), while the susceptible cultivar showed only 60 DEGs. In further analysis, we observed clear differences in gene category between up- and down-regulated expression of genes (uDEGs and dDEGs) based on Gene Ontology (GO) classes in response to infection in the tolerant cultivar ZD, and then identified uDEGs related to cell surface pattern recognition receptors, the Ca ion signaling pathway, and the Mitogen-Activated Protein Kinase (MAPK) cascade that play a positive role against In addition, DEGs of the jasmonic acid and ethylene signaling pathways were mainly positively regulated, whereas DEGs of the auxin signaling pathway were mainly negatively regulated. Transcription factors were involved in the immune response as either positive or negative regulators of the response to this pathogen. Furthermore, our results showed that chloroplasts play a crucial role and that reduced photosynthetic capacity is a critical feature of this response. The results of this research have important implications for better characterization of the molecular mechanism of SB resistance and for the development of resistant cultivars through molecular breeding methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532033PMC
http://dx.doi.org/10.3390/ijms241814310DOI Listing

Publication Analysis

Top Keywords

tolerant cultivar
12
tolerant susceptible
8
positive negative
8
negative regulators
8
regulators response
8
susceptible cultivar
8
signaling pathway
8
rice
7
cultivar
6
response
6

Similar Publications

This study introduces a Drought Adaptation Index (DAI), derived from Best Linear Unbiased Prediction (BLUP), as a method to assess drought resilience in switchgrass ( L.). A panel of 404 genotypes was evaluated under drought-stressed (CV) and well-watered (UC) conditions over four consecutive years (2019-2022).

View Article and Find Full Text PDF

Divergent effects of successive drought and flooding on photosynthesis in wheat and barley.

Front Plant Sci

August 2025

Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom.

Climate change is leading to increases in extreme weather events, notably increasing both droughts and floods, which undermine food security. Although each stress individually has been well studied, little is known about the response of cereals to successive water stresses, condition that often occurs in real-world scenarios. To address this gap, we have compared physiological responses of wheat and barley cultivars to cycles of drought and flooding.

View Article and Find Full Text PDF

Background: Red leaf blotch (RLB), caused by Polystigma amygdalinum, is a major foliar disease of almond trees in Mediterranean and Middle Eastern regions. While preventive fungicide applications are the main control strategy, cultural practices aimed at reducing pathogen inoculum in leaf litter are gaining relevance. This study evaluated the efficacy of four chemical treatments on fungal biomass and ascospore production in leaf litter and assessed the impact of two cultural practices-urea application and leaf litter removal-on airborne inoculum levels and disease incidence under field conditions.

View Article and Find Full Text PDF

Dataset of rice growth for saline-alkaline tolerance screening.

Data Brief

October 2025

Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8528, Japan.

This dataset exhibits the growth profile of multiple rice varieties, most of which include world or Japanese rice core collections, under saline-alkaline conditions through two screenings. In both the first and second screenings, the rice plants were hydroponically cultivated for 4 weeks under normal conditions and then subjected to control or saline-alkaline conditions for 2 weeks. In the first screening, dry weight, dry weight ratio, and SPAD values were measured, and candidate varieties possessing saline-alkaline tolerance (7 varieties) or sensitivity (3 varieties) were selected based on the dry weight ratio.

View Article and Find Full Text PDF

Horticultural crops are increasingly exposed to simultaneous abiotic stresses such as drought, salinity, and temperature extremes, which often exacerbate each other's effects, leading to severe yield and quality losses. Addressing these multifaceted challenges necessitates the development and application of integrated and innovative strategies. This review highlights recent advancements in methodologies to enhance the resilience of horticultural crops against combined abiotic stresses.

View Article and Find Full Text PDF