Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The present study was conducted to investigate the potential of radiomics to develop an explainable AI-based system to be applied to ultra-widefield fundus retinographies (UWF-FRTs) with the objective of predicting the presence of the early signs of Age-related Macular Degeneration (AMD) and stratifying subjects with low- versus high-risk of AMD. The ultimate aim was to provide clinicians with an automatic classifier and a signature of objective quantitative image biomarkers of AMD. The use of Machine Learning (ML) and radiomics was based on intensity and texture analysis in the macular region, detected by a Deep Learning (DL)-based macular detector. Two-hundred and twenty six UWF-FRTs were retrospectively collected from two centres and manually annotated to train and test the algorithms. Notably, the combination of the ML-based radiomics model and the DL-based macular detector reported 93% sensitivity and 74% specificity when applied to the data of the centre used for external testing, capturing explainable features associated with drusen or pigmentary abnormalities. In comparison to the human operator's annotations, the system yielded a 0.79 Cohen , demonstrating substantial concordance. To our knowledge, these results are the first provided by a radiomic approach for AMD supporting the suitability of an explainable feature extraction method combined with ML for UWF-FRT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528426PMC
http://dx.doi.org/10.3390/diagnostics13182965DOI Listing

Publication Analysis

Top Keywords

machine learning
8
age-related macular
8
macular degeneration
8
ultra-widefield fundus
8
dl-based macular
8
macular detector
8
macular
5
radiomic-based machine
4
learning system
4
system diagnose
4

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF