98%
921
2 minutes
20
Modern analytical size exclusion chromatography (SEC) is a suitable technique to separate venom toxin families according to their size characteristics. In this study, a method was developed to separate intact venom toxins from and venoms via analytical SEC using volatile, non-salt-containing eluents for post-column mass spectrometry, coagulation bioassaying and high-throughput venomics. Two venoms were used to demonstrate the method developed. While the venom of is known to exert anticoagulant effects on plasma, in this study, we showed the existence of both procoagulant toxins and anticoagulant toxins. For venom, the method revealed characteristic procoagulant effects, with a 90 kDa mass toxin detected and matched with the Factor X-activating procoagulant heterotrimeric glycoprotein named RVV-X. The strong procoagulant effects for this toxin show that it was most likely eluted from size exclusion chromatography non-denatured. In conclusion, the separation of snake venom by size gave the opportunity to separate some specific toxin families from each other non-denatured, test these for functional bioactivities, detect the eluting mass on-line via mass spectrometry and identify the eluted toxins using high-throughput venomics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534738 | PMC |
http://dx.doi.org/10.3390/toxins15090552 | DOI Listing |
J Sep Sci
September 2025
Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
The increasing use of engineered nanoparticles (NPs) in consumer and biomedical products has raised concern over their potential accumulation, transformation, and toxicity in biological systems. Accurate analytical methods are essential to detect, characterize, and quantify NPs in complex biological matrices. Inductively coupled plasma mass spectrometry (ICP-MS) has emerged as a leading technique due to its high sensitivity, elemental selectivity, and quantitative capabilities.
View Article and Find Full Text PDFMol Pharm
September 2025
Department of Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, U.K.
We built a custom device to subject an antibody fragment A33 Fab to controlled stress conditions that combined pH, temperature, agitation, and LED-based light exposure in polypropylene microplates; to simulate the real-world challenges it may encounter during storage and transportation and to evaluate the key degradation routes in Fab formulations. We also explored the addition of Tween 80 as a surfactant and the impact of plate surface siliconisation. Monomer loss and fragmentation was monitored by size-exclusion chromatography, aggregate formation determined by changes in hydrodynamic radius in DLS, and chemical modifications identified through intact mass analysis by LC-MS, and N-terminal sequencing.
View Article and Find Full Text PDFPoult Sci
August 2025
Department of Poultry Science, University of Georgia, 109 Conner Hall, 147 Cedar Street, Athens, GA 30602, USA. Electronic address:
Recent estimates indicate chicken meat products as the prominent contributing sources of foodborne salmonellosis, accounting for 18.6 % of the Salmonella-related illnesses. Salmonella in poultry processing originates at production, with the fecal-oral route being a major route of spread.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
October 2025
Turkish Accelerator and Radiation Laboratory, 06830 Ankara, Türkiye.
Membrane-protein quality control in Escherichia coli involves coordinated actions of the AAA+ protease FtsH, the insertase YidC and the regulatory complex HflKC. These systems maintain proteostasis by facilitating membrane-protein insertion, folding and degradation. To gain structural insights into a putative complex formed by FtsH and YidC, we performed single-particle cryogenic electron microscopy on detergent-solubilized membrane samples, from which FtsH and YidC were purified using Ni-NTA affinity and size-exclusion chromatography.
View Article and Find Full Text PDFVet World
July 2025
Department of Animal Production, Faculty of Animal Science, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia.
Background And Aim: The () gene is recognized as a critical regulator of ovarian function and fertility in cattle. However, its role in crossbred populations, particularly Madrasin cattle (Madura × Simmental cross), remains underexplored. Understanding the genetic underpinnings of fertility traits in this crossbreed could provide valuable insights for improving reproductive efficiency in Indonesia's livestock sector.
View Article and Find Full Text PDF