Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

For decades, tissue regeneration has been a challenging issue in scientific modeling and human practices. Although many conventional therapies are already used to treat burns, muscle injuries, bone defects, and hair follicle injuries, there remains an urgent need for better healing effects in skin, bone, and other unique tissues. Recent advances in three-dimensional (3D) printing and real-time monitoring technologies have enabled the creation of tissue-like membranes and the provision of an appropriate microenvironment. Using tissue engineering methods incorporating 3D printing technologies and biomaterials for the extracellular matrix (ECM) containing scaffolds can be used to construct a precisely distributed artificial membrane. Moreover, advances in smart sensors have facilitated the development of tissue regeneration. Various smart sensors may monitor the recovery of the wound process in different aspects, and some may spontaneously give feedback to the wound sites by releasing biological factors. The combination of the detection of smart sensors and individualized membrane design in the healing process shows enormous potential for wound dressings. Here, we provide an overview of the advantages of 3D printing and conventional therapies in tissue engineering. We also shed light on different types of 3D printing technology, biomaterials, and sensors to describe effective methods for use in skin and other tissue regeneration, highlighting their strengths and limitations. Finally, we highlight the value of 3D bioengineered membranes in various fields, including the modeling of disease, organ-on-a-chip, and drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535523PMC
http://dx.doi.org/10.3390/membranes13090802DOI Listing

Publication Analysis

Top Keywords

tissue regeneration
16
smart sensors
12
conventional therapies
8
tissue engineering
8
tissue
6
development prospective
4
prospective applications
4
applications membranes
4
membranes sensor
4
sensor monitoring
4

Similar Publications

The stress urinary incontinence (SUI) is a difficulty in urology and current sub-urethral sling treatments are associated with inflamation and recurrence. In this study, we developed a novel tissue-engineered sling with myogenic induced adiposederived stem cells (MI-ADSCs) sheets induced by 5-Aza and combined with electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) (SF/PLGA) for the treatment of stress urinary incontinence. MI-ADSCs increased α-SMA, MyoD and Desmin the mRNA and protein expression.

View Article and Find Full Text PDF

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

Triply periodic minimal surfaces have garnered significant interest in the field of biomaterial scaffolds due to their unique structural properties, including a high surface-to-volume (S/V) ratio, tunable permeability, and the potential for enhanced biocompatibility. Bone scaffolds necessitate specific features to effectively support tissue regeneration. This study examines the permeability and active cell proliferation area of advanced Triply Periodic Minimal Surface (TPMS) lattice structures, focusing on a novel lattice design.

View Article and Find Full Text PDF

Piezo1 promotes M1 macrophage polarization and impairs osteogenic differentiation in bone infection.

Biochim Biophys Acta Mol Basis Dis

September 2025

Department of Orthopaedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, No.466 Xingang Road, Haizhu District, Guangzhou, 510317, PR China; Southern Medical University, No. 1023-1063, Satai South Road, Baiyun District, Guangzhou, 510515, PR China. Electronic addre

Background: Bone infection induces a strong inflammatory response and leads to impaired bone regeneration, in which macrophages sense mechanistic signals and modulate immune responses in the inflammatory microenvironment through Piezo1. Nonetheless, the regulatory role of Piezo1 in macrophages during bone infection remains elusive.

Methods: Rat models of infected bone defects were established for bulk RNA sequencing and single-cell RNA sequencing.

View Article and Find Full Text PDF

Extensive peripheral nerve injuries often lead to the loss of neurological function due to slow regeneration and limited recovery over large gaps. Current clinical interventions, such as nerve guidance conduits (NGCs), face challenges in creating biomimetic microenvironments that effectively support nerve repair. The developed GrooveNeuroTube is composed of hyaluronic acid methacrylate and gelatin methacrylate hydrogel, incorporating active agents (growth factors and antibacterial agents) encapsulated within an NGC conduit made of 3D-printed PCL grid fibers.

View Article and Find Full Text PDF