98%
921
2 minutes
20
Neurodegenerative diseases encompass a group of debilitating conditions resulting from progressive nerve cell death. Of these, Alzheimer's disease (AD) occurs most frequently, but is currently incurable and has limited treatment success. Late onset AD, the most common form, is highly heritable but is caused by a combination of non-genetic risk factors and many low-effect genetic variants whose disease-causing mechanisms remain unclear. By mining the FinnGen study database of phenome-wide association studies, we identified a rare variant, rs148726219, enriched in the Finnish population that is associated with AD risk and dementia, and appears to have arisen on a common haplotype with older AD-associated variants such as rs429358. The rs148726219 variant lies in an overlapping intron of the FosB proto-oncogene (FOSB) and ERCC excision repair 1 (ERCC1) genes. To understand the impact of this SNP on disease phenotypes, we performed CRISPR/Cas9 editing in a human induced pluripotent stem cell (hiPSC) line to generate isogenic clones harboring heterozygous and homozygous alleles of rs148726219. hiPSC clones differentiated into induced excitatory neurons (iNs) did not exhibit detectable molecular or morphological variation in differentiation potential compared to isogenic controls. However, global transcriptome analysis showed differential regulation of nearby genes and upregulation of several biological pathways related to neuronal function, particularly synaptogenesis and calcium signaling, specifically in mature iNs harboring rs148726219 homozygous and heterozygous alleles. Functional differences in iN circuit maturation as measured by calcium imaging were observed across genotypes. Edited mature iNs also displayed downregulation of unfolded protein response and cell death pathways. This study implicates a phenotypic impact of rs148726219 in the context of mature neurons, consistent with its identification in late onset AD, and underscores a hiPSC-based experimental model to functionalize GWAS-identified variants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521995 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291029 | PLOS |
Elife
September 2025
Human Biology and Primate Evolution, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
Evidence indicates that transposable elements (TEs) can contribute to the evolution of new traits, with some TEs acting as deleterious elements while others are repurposed for beneficial roles in evolution. In mammals, some KRAB-ZNF proteins can serve as a key defense mechanism to repress TEs, offering genomic protection. Notably, the family of KRAB-ZNF genes evolves rapidly and exhibits diverse expression patterns in primate brains, where some TEs, including autonomous LINE-1 and non-autonomous Alu and SVA elements, remain mobile.
View Article and Find Full Text PDFJ Alzheimers Dis
September 2025
Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Roma, Italy.
BackgroundAlzheimer's disease (AD) is the most common neurodegenerative disorder. While AD diagnosis traditionally relies on clinical criteria, recent trends favor a precise biological definition. Existing biomarkers efficiently detect AD pathology but inadequately reflect the extent of cognitive impairment or disease heterogeneity.
View Article and Find Full Text PDFJ Alzheimers Dis
September 2025
Paula Costa-Urrutia Medical Affairs, Terumo BCT, Edificio Think MVD, Montevideo, Uruguay.
BackgroundTherapeutic plasma exchange (TPE) with albumin replacement has emerged as a potential treatment for Alzheimer's disease (AD). The AMBAR trial showed that TPE could slow cognitive and functional decline, along with changes in core and inflammatory biomarkers in cerebrospinal fluid.ObjectiveTo evaluate the safety and effectiveness of TPE in a real-world setting in Argentina.
View Article and Find Full Text PDFJ Alzheimers Dis
September 2025
Department of Community Health and Health Behavior, University at Buffalo, Buffalo, NY, USA.
BackgroundFear of developing Alzheimer's disease and other dementias could motivate defensive responses to dementia information, including public health messaging, and reduce willingness to undergo screening or diagnostic testing for the disease.ObjectiveWe sought to assess the pervasiveness of dementia information avoidance and test whether it is associated with lower willingness to be screened for dementia. We also tested whether lower generalized self-efficacy is associated with higher dementia information avoidance, as the former might be a point of intervention for decreasing defensive information avoidance.
View Article and Find Full Text PDFInflammopharmacology
September 2025
Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
The NOD‑like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a key molecular complex that amplifies inflammatory cascades by maturing interleukin‑1 beta (IL-1β) and interleukin‑18 (IL-18) and inducing pyroptosis. It serves as a major driver and co-driver of numerous diseases associated with chronic inflammation. Dysregulated NLRP3 activation contributes to the progression of disorders such as rheumatoid arthritis, inflammatory bowel disease, neurodegenerative diseases and atherosclerosis.
View Article and Find Full Text PDF