Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Drug-drug interaction (DDI) prediction can discover potential risks of drug combinations in advance by detecting drug pairs that are likely to interact with each other, sparking an increasing demand for computational methods of DDI prediction. However, existing computational DDI methods mostly rely on the single-view paradigm, failing to handle the complex features and intricate patterns of DDIs due to the limited expressiveness of the single view. To this end, we propose a Hierarchical Triple-view Contrastive Learning framework for Drug-Drug Interaction prediction (HTCL-DDI), leveraging the molecular, structural and semantic views to model the complicated information involved in DDI prediction. To aggregate the intra-molecular compositional and structural information, we present a dual attention-aware network in the molecular view. Based on the molecular view, to further capture inter-molecular information, we utilize the one-hop neighboring information and high-order semantic relations in the structural view and semantic view, respectively. Then, we introduce contrastive learning to enhance drug representation learning from multifaceted aspects and improve the robustness of HTCL-DDI. Finally, we conduct extensive experiments on three real-world datasets. All the experimental results show the significant improvement of HTCL-DDI over the state-of-the-art methods, which also demonstrates that HTCL-DDI opens new avenues for ensuring medication safety and identifying synergistic drug combinations.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbad324DOI Listing

Publication Analysis

Top Keywords

contrastive learning
12
drug-drug interaction
12
ddi prediction
12
hierarchical triple-view
8
triple-view contrastive
8
learning framework
8
framework drug-drug
8
interaction prediction
8
drug combinations
8
molecular view
8

Similar Publications

Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.

Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.

View Article and Find Full Text PDF

Neural Quantum Embedding via Deterministic Quantum Computation with One Qubit.

Phys Rev Lett

August 2025

Southern University of Science and Technology, Department of Physics, State Key Laboratory of Quantum Functional Materials, and Guangdong Basic Research Center of Excellence for Quantum Science, Shenzhen 518055, China.

Quantum computing is expected to provide an exponential speedup in machine learning. However, optimizing the data loading process, commonly referred to as "quantum data embedding," to maximize classification performance remains a critical challenge. In this Letter, we propose a neural quantum embedding (NQE) technique based on deterministic quantum computation with one qubit (DQC1).

View Article and Find Full Text PDF

Background: Underwater environments face challenges with image degradation due to light absorption and scattering, resulting in blurring, reduced contrast, and color distortion. This significantly impacts underwater exploration and environmental monitoring, necessitating advanced algorithms for effective enhancement.

Objectives: The study aims to develop an innovative underwater image enhancement algorithm that integrates physical models with deep learning to improve visual quality and surpass existing methods in performance metrics.

View Article and Find Full Text PDF

Objective: Frequent and objective assessment of ataxia severity is essential for tracking disease progression and evaluating the effectiveness of potential treatments. Wearable-based assessments have emerged as a promising solution. However, existing methods rely on inertial data features directly correlated with subjective and coarse clinician-evaluated rating scales, which serve as imperfect gold standards.

View Article and Find Full Text PDF

Objective: To identify the key features of facial and tongue images associated with anemia in female populations, establish anemia risk-screening models, and evaluate their performance.

Methods: A total of 533 female participants (anemic and healthy) were recruited from Shuguang Hospital. Facial and tongue images were collected using the TFDA-1 tongue and face diagnosis instrument.

View Article and Find Full Text PDF