Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bridging applied ecology and ecotoxicology is key to protect ecosystems. These disciplines show a mismatch, especially when evaluating pressures. Contrasting to applied ecology, ecotoxicological impacts are often characterized for whole species assemblages based on Species Sensitivity Distributions (SSDs). SSDs are statistical models describing per chemical across-species sensitivity variation based on laboratory toxicity tests. To assist in the aligning of the disciplines and improve decision-support uses of SSDs, we investigate taxonomic-group-specific SSDs for algae/cyanobacteria/aquatic plants, invertebrates, and vertebrates for 180 chemicals with sufficient test data. We show that splitting improves pollution impact assessments for chemicals with a specific mode of action and, surprisingly, for narcotic chemicals. We provide a framework for splitting SSDs that can be applied to serve in environmental protection, life cycle assessment, and management of freshwater ecosystems. We illustrate that using split SSDs has potentially large implications for the decision-support of SSD-based outputs around the globe.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552544PMC
http://dx.doi.org/10.1021/acs.est.3c04968DOI Listing

Publication Analysis

Top Keywords

species sensitivity
8
sensitivity distributions
8
applied ecology
8
ssds
6
split split
4
split characterizing
4
characterizing chemical
4
chemical pollution
4
pollution impacts
4
impacts aquatic
4

Similar Publications

The kinetics of nsp7-11 polyprotein processing and impact on complexation with nsp16 among human coronaviruses.

Nat Commun

September 2025

CSSB Centre for Structural Systems Biology, Deutsches Elektronen Synchroton DESY, Leibniz Institute of Virology, University of Lübeck, Hamburg, Germany.

In coronavirus (CoV) infection, polyproteins (pp1a/pp1ab) are processed into non-structural proteins (nsps), which largely form the replication/transcription complex (RTC). The polyprotein processing and complex formation is critical and offers potential therapeutic targets. However, the interplay of polyprotein processing and RTC-assembly remains poorly understood.

View Article and Find Full Text PDF

Auxin Gradients Determine Reproductive Development in Pea (Pisum sativum).

Physiol Plant

September 2025

Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.

Auxins are involved in the regulation of fruit set and development; however, the role of IAA is unclear in pea (Pisum sativum) since the endogenous auxin 4-Cl-IAA appears to be the auxin stimulating ovary (pericarp) growth. To further understand the role of auxins during fruit development, auxin localization, quantitation, transport, and gene expression activity were assessed in this model legume species. IAA levels and auxin activity (DR5::β-Glucuronidase [GUS] staining and enzyme activity) were substantially reduced in the pericarp vascular tissues, pedicels, and peduncles of fruit upon seed removal, reflecting auxin transport streams derived from the seeds through these tissues.

View Article and Find Full Text PDF

Ambroxol (AMB), a common expectorant, enters aquatic environments via wastewater, yet its ecological risks remain unclear. Under UV exposure (15 mJ·cm, λ = 185-400 nm), AMB undergoes photolysis, among the photoproducts, 4-((2-amino-3-bromobenzyl)amino) cyclohexanol (P1) and 2-amino-3,5-dibromobenzaldehyde (DBA) are major species, comprising over 50% of the total photoproduct peak area at the photolytic plateau. Acute toxicity tests with AMB, P1, and DBA in four aquatic species at different trophic levels revealed: the highest sensitivity in (LC = 0.

View Article and Find Full Text PDF

Severe fever with thrombocytopaenia syndrome virus (SFTSV) was identified by the World Health Organization as a priority pathogen due to its high case-fatality rate in humans and rapid spread. It is maintained in nature through three transmission pathways: systemic, non-systemic and transovarial. Understanding the relative contributions of these transmission pathways is crucial for developing evidence-informed public health interventions to reduce its spillover risks to humans.

View Article and Find Full Text PDF

New SARS-CoV-2 variants continue to emerge and may cause new waves of COVID-19. Antibody evasion is a major driver of variant emergence but variants can also exhibit altered capacity to enter lung cells and to use ACE2 species orthologues for cell entry. Here, we assessed cell line tropism, usage of ACE2 orthologues and antibody evasion of variant MC.

View Article and Find Full Text PDF