Endonucleolytic processing plays a critical role in the maturation of ribosomal RNA in .

RNA Biol

State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ribosomal RNA (rRNA) processing and maturation are fundamentally important for ribosome biogenesis, but the mechanisms in archaea, the third form of life, remains largely elusive. This study aimed to investigate the rRNA maturation process in , a representative archaeon lacking known 3'-5' exonucleases. Through cleavage site identification and enzymatic assays, the splicing endonuclease EndA was determined to process the bulge-helix-bulge (BHB) motifs in 16S and 23S rRNA precursors. After splicing, the circular processing intermediates were formed and this was confirmed by quantitative RT-PCR and Northern blot. Ribonuclease assay revealed a specific cleavage at a 10-nt A/U-rich motif at the mature 5' end of pre-16S rRNA, which linearized circular pre-16S rRNA intermediate. Further 3'-RACE and ribonuclease assays determined that the endonuclease Nob1 cleaved the 3' extension of pre-16S rRNA, and so generated the mature 3' end. Circularized RT-PCR (cRT-PCR) and 5'-RACE identified two cleavage sites near helix 1 at the 5' end of 23S rRNA, indicating that an RNA structure-based endonucleolytic processing linearized the circular pre-23S rRNA intermediate. In the maturation of pre-5S rRNA, multiple endonucleolytic processing sites were determined at the 10-nt A/U-rich motif in the leader and trailer sequence. This study demonstrates that endonucleolytic processing, particularly at the 10-nt A/U-rich motifs play an essential role in the pre-rRNA maturation of . , indicating diverse pathways of rRNA maturation in archaeal species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515664PMC
http://dx.doi.org/10.1080/15476286.2023.2258035DOI Listing

Publication Analysis

Top Keywords

endonucleolytic processing
16
10-nt a/u-rich
12
pre-16s rrna
12
rrna
10
ribosomal rna
8
rrna maturation
8
23s rrna
8
a/u-rich motif
8
linearized circular
8
rrna intermediate
8

Similar Publications

Small nucleolar RNAs (snoRNAs) are a class of eukaryotic non-coding RNA molecules whose precursor transcripts are capped and polyadenylated. However, these end modifications are detrimental to snoRNA function and must be removed, a process typically involving excision from introns and/or endonucleolytic cleavage. For RNA precursors that host multiple snoRNAs, the sequence of maturation events is potentially important, but not well understood.

View Article and Find Full Text PDF

The first post-transcriptional step in mammalian mitochondrial gene expression, required for the synthesis of the 13 polypeptides encoded in mitochondrial DNA (mtDNA), is endonucleolytic cleavage of the primary polycistronic transcripts. Excision of the mtDNA-encoded transfer RNAs (tRNAs) releases most mature RNAs; however, processing of three noncanonical messenger RNAs (mRNAs) not flanked by tRNAs (CO1, CO3, and CYB) requires FASTKD5. To investigate the molecular mechanism involved, we created knockout human cell lines to use as assay systems.

View Article and Find Full Text PDF

Single-stranded DNA (ssDNA) gaps impact genome stability and PARP inhibitor (PARPi) sensitivity, especially in BRCA1/2-deficient tumors. Using single-molecule DNA fiber analysis, electron microscopy, and biochemical methods, we found that MRN, CtIP, EXO1, and DNA2-WRN/BLM resect ssDNA gaps through a mechanism different from their actions at DNA ends. MRN resects ssDNA gaps in the 3'-to-5' direction using its pCtIP-stimulated exonuclease activity.

View Article and Find Full Text PDF

The endonucleolytic cleavage step of the eukaryotic mRNA 3'-end processing is considered imprecise, which leads to heterogeneity of cleavage site (CS) with hitherto unknown function. Contrary to popular belief, we show that this imprecision in the cleavage is tightly regulated, resulting in the CS heterogeneity (CSH) that controls gene expression in antioxidant response. CSH centres around a primary CS, followed by several subsidiary cleavages determined by CS's positions.

View Article and Find Full Text PDF

Circular RNA Formation and Degradation Are Not Directed by Universal Pathways.

Int J Mol Sci

January 2025

Department of Rare Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.

Circular RNAs (circRNAs) are a class of unique transcripts characterized by a covalently closed loop structure, which differentiates them from conventional linear RNAs. The formation of circRNAs occurs co-transcriptionally and post-transcriptionally through a distinct type of splicing known as back-splicing, which involves the formation of a head-to-tail splice junction between a 5' splice donor and an upstream 3' splice acceptor. This process, along with exon skipping, intron retention, cryptic splice site utilization, and lariat-driven intron processing, results in the generation of three main types of circRNAs (exonic, intronic, and exonic-intronic) and their isoforms.

View Article and Find Full Text PDF