98%
921
2 minutes
20
Eukaryotic cells control inorganic phosphate to balance its role as essential macronutrient with its negative bioenergetic impact on reactions liberating phosphate. Phosphate homeostasis depends on the conserved INPHORS signaling pathway that utilizes inositol pyrophosphates and SPX receptor domains. Since cells synthesize various inositol pyrophosphates and SPX domains bind them promiscuously, it is unclear whether a specific inositol pyrophosphate regulates SPX domains in vivo, or whether multiple inositol pyrophosphates act as a pool. In contrast to previous models, which postulated that phosphate starvation is signaled by increased production of the inositol pyrophosphate 1-IP, we now show that the levels of all detectable inositol pyrophosphates of yeast, 1-IP, 5-IP, and 1,5-IP, strongly decline upon phosphate starvation. Among these, specifically the decline of 1,5-IP triggers the transcriptional phosphate starvation response, the PHO pathway. 1,5-IP inactivates the cyclin-dependent kinase inhibitor Pho81 through its SPX domain. This stimulates the cyclin-dependent kinase Pho85-Pho80 to phosphorylate the transcription factor Pho4 and repress the PHO pathway. Combining our results with observations from other systems, we propose a unified model where 1,5-IP signals cytosolic phosphate abundance to SPX proteins in fungi, plants, and mammals. Its absence triggers starvation responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511240 | PMC |
http://dx.doi.org/10.7554/eLife.87956 | DOI Listing |
Plant J
September 2025
Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
While plants adapt to fluctuating phosphorus (P) availability in soils by enhancing phosphate acquisition or optimizing internal P-utilization, the spatiotemporal dynamics of these responses, particularly in crops, remain poorly understood. This study systematically investigated how and when potato organs respond to fluctuating P availability across different developmental stages using transcriptomic, metabolomic, and physiological analyses of leaves, roots, and tubers. Transcriptomic data revealed dynamic, organ- and stage-specific responses to P-deficiency, with the highest number of differentially expressed genes in leaves before tuberization and in roots during tuberization.
View Article and Find Full Text PDFBiology (Basel)
July 2025
National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Science, Henan University, Kaifeng 475000, China.
SPX () family genes play a pivotal role in phosphorus signaling, phosphorus uptake, and phosphorus translocation in plants. However, to date, the SPX family genes have not been systematically investigated in cotton. In this study, we conducted a genome-wide analysis and identified 44 SPX family genes in , classifying them into four subfamilies (SPX, SPX-MFS, SPX-EXS, and SPX-RING) based on conserved domains.
View Article and Find Full Text PDFRice (N Y)
September 2025
Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Southwest Bio-resources R&D Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610064, Sichuan, China.
The 14-3-3 proteins are highly conserved and widely distributed across eukaryotes. Some 14-3-3 proteins have been identified as regulators of phosphorus (Pi) deficiency tolerance in rice, but their diverse functions remain largely unexplored. In this study, we characterized the role of rice plant-specific non-ε group 14-3-3 proteins (OsGF14a-f) in response to Pi starvation by mutating these genes.
View Article and Find Full Text PDFPlant Physiol
September 2025
Institute of Crop Science, Zhejiang University, Hangzhou 310058, PR China.
Low phosphorus (LP) tolerance varies among plant species and genotypes within a species, and the molecular mechanisms underlying P signaling in barley (Hordeum vulgare L.) remain unclear. Here, we report the function of HvSPX4, a member of the SPX (SYG1/Pho81/XPR1) subfamily, in maintaining P homeostasis and regulating low P responses in barley.
View Article and Find Full Text PDFSci Adv
August 2025
Biosciences, University of Exeter, Exeter, EX4 4QD, UK.
Nutrient availability controls phytoplankton growth in aquatic ecosystems globally. Phytoplankton frequently experience a limiting supply of multiple nutrients simultaneously (colimitation). Ocean warming is predicted to exacerbate marine nutrient limitation.
View Article and Find Full Text PDF