Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The mechanical and metabolic responses of walking by obese children are not yet well understood. The objectives of this study were (1) to compare the pendular mechanism (recovery, phase shift by α and β values, and ratio between forward and vertical mechanical work), the maximum possible elastic energy usage and the bilateral coordination during walking between non-obese and obese children, and (2) to verify if the bilateral coordination could contribute to understanding the pendular mechanism and elastic energy usage in these populations. Nine obese (six female, 8.7 ± 0.5 years, 1.38 ± 0.04 m, 44.4 ± 6.3 kg and 24.1 ± 3.50 kg/m ) and eight non-obese (four female, 7.4 ± 0.5 years, 1.31 ± 0.08 m, 26.6 ± 2.1 kg and 16.4 ± 1.40 kg/m ) children were analysed during walking on a treadmill at five speeds: 1, 2, 3, 4 and 5 km/h. The results indicated that although the mechanical energy response of the centre of mass during walking is similar between obese and non-obese children, the obese children showed a lower pendulum-like mechanism and greater elastic energy usage during level walking. Therefore, obese children seem to use more elastic energy during walking compared to non-obese children, which may be related to their apparent higher positive work production during the double support phase. Finally, bilateral coordination presented high values at slow speeds in both groups and requires further attention due to its association with falls. NEW FINDINGS: What is the central question of this study? Are there any differences of the pendular and elastic mechanisms and bilateral coordination during walking between non-obese and obese children? What is the main finding and its importance? To our knowledge, this study is the first to analyse the mechanical energy usage and the bilateral coordination of obese and non-obese children during walking. Obese children had a lower pendular recovery mechanism and used more elastic energy compared to non-obese children. The bilateral coordination was higher at slow speeds in both groups and requires further attention due to its association with falls.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10988495PMC
http://dx.doi.org/10.1113/EP091408DOI Listing

Publication Analysis

Top Keywords

elastic energy
24
bilateral coordination
24
energy usage
20
walking obese
20
non-obese children
20
obese children
20
pendular mechanism
12
obese non-obese
12
children
11
obese
10

Similar Publications

Jahn-Teller Distortion Enables Enhanced Piezoelectric Energy Harvesting Properties of a Metal-Pyrazolylborate Complex.

Inorg Chem

September 2025

College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong 266071, P. R. China.

Molecular piezoelectrics have garnered significant attention in energy harvesting and sensing fields due to their high intrinsic piezoelectricity, low elastic properties, and excellent solution processability. Recent efforts have primarily focused on rationally tuning the piezoelectric performance of these materials through the molecular predesign of organic components. However, the regulation of piezoelectric properties via the central metal ion has remained relatively underexplored.

View Article and Find Full Text PDF

Hydrogen embrittlement (HE) poses a significant challenge to the durability of materials used in hydrogen production and utilization. Disentangling the competing nanoscale mechanisms driving HE often relies on simulations and electron-transparent sample techniques, limiting experimental insights into hydrogen-induced dislocation behavior in bulk materials. This study employs in situ Bragg coherent X-ray diffraction imaging to track three-dimensional (3D) dislocation and strain field evolution during hydrogen charging in a bulk grain of austenitic 316 stainless steel.

View Article and Find Full Text PDF

Quasielastic and Inelastic Neutron Scattering Study of Ultraconfined Water in Natural Mordenite ((Ca,Na,K)AlSiO·7HO).

Langmuir

September 2025

Neutron Scattering Division, Oak Ridge National Laboratory, MS 6473, Oak Ridge, Tennessee 37831 United States.

Mordenite ((Ca,Na,K)AlSiO·7HO) is a natural and synthetic nanoporous zeolite containing several channels of different sizes in its structure. Because of this, its structure provides an important opportunity to study the relationship between confined and ultraconfined water as these channels have sizes between those typical of these water environments. In this study, the properties of water molecules in these environments were analyzed using inelastic and quasielastic neutron spectroscopy of a natural mordenite.

View Article and Find Full Text PDF

Novel Visceral Obesity Indicators and Associated Metabolic Fingerprint in Incident Diabetic Retinopathy.

Invest Ophthalmol Vis Sci

September 2025

Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology. Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, People's Republic of China.

Purpose: Evidence on the association between visceral obesity and diabetic retinopathy (DR) remains sparse and debatable. We aimed to use three novel indicators, body roundness index (BRI), lipid accumulation product (LAP), and visceral adiposity index (VAI), to investigate the longitudinal relationship between visceral obesity and DR, and explore the potential metabolic mechanisms.

Methods: In this prospective study based on the UK Biobank (UKB), 14,738 individuals with diabetes free of DR at baseline were included.

View Article and Find Full Text PDF

Design of Cu/Zr Alloy Interface for Enhanced Thermal Fatigue Performance in Electronic Packaging.

ACS Omega

September 2025

Materials and Manufacturing Directorate, AFRL/RXEE, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States.

This study addresses a critical limitation in direct bonded copper (DBC) materials used in power electronics by introducing a copper-zirconium (Cu/Zr) alloy interposing layer at the copper-ceramic interface. This novel design aims to mitigate mechanical stress induced by mismatched material properties, such as the coefficient of thermal expansion (CTE) and elastic modulus, during thermal cycling. The key findings of this study are (1) thermal fatigue improvement: Test samples with the Cu/Zr interface layer (Cu-Cu/Zr-AlN) three times enhanced thermal fatigue resistance, surviving 30 thermal cycles from -55 to 300 °C before delamination, while standard DBC substrates without the Cu/Zr layer failed after just 10 cycles, indicating a performance improvement with the Cu/Zr alloy, (2) durability projections: Based on the Coffin-Manson model, if the upper temperature is capped at 150 °C, the Cu-Cu/Zr-AlN substrates are projected to survive approximately 1372 cycles, underscoring their potential for long-term reliability, and (3) stress mitigation: The Cu/Zr alloy layer bridges the CTE disparity between copper and ceramic, reducing mechanical stress and improving structural integrity across a broad temperature range (-55 to 300 °C).

View Article and Find Full Text PDF