98%
921
2 minutes
20
External beam radiation therapy (EBRT) of liver cancers can cause local liver atrophy as a result of tissue damage or hypertrophy as a result of liver regeneration. Predicting those volumetric changes would enable new strategies for liver function preservation during treatment planning. However, understanding of the spatial dose/volume relationship is still limited. This study leverages the use of deep learning-based segmentation and biomechanical deformable image registration (DIR) to analyze and predict this relationship. Pre- and Post-EBRT imaging data were collected for 100 patients treated for hepatocellular carcinomas, cholangiocarcinoma or CRC with intensity-modulated radiotherapy (IMRT) with prescription doses ranging from 50 to 100 Gy delivered in 10-28 fractions. For each patient, DIR between the portal and venous (PV) phase of a diagnostic computed tomography (CT) scan acquired before radiation therapy (RT) planning, and a PV phase of a diagnostic CT scan acquired after the end of RT (on average 147 ± 36 d) was performed to calculate Jacobian maps representing volume changes in the liver. These volume change maps were used: (i): to analyze the dose/volume relationship in the whole liver and individual Couinaud's segments; and (ii): to investigate the use of deep-learning to predict a Jacobian map solely based on the pre-RT diagnostic CT and planned dose distribution. Moderate correlations between mean equivalent dose in 2 Gy fractions (EQD2) and volume change was observed for all liver sub-regions analyzed individually with Pearson correlationranging from -0.36 to -067. The predicted volume change maps showed a significantly stronger voxel-wise correlation with the DIR-based volume change maps than when considering the original EQD2 distribution (0.63 ± 0.24 versus 0.55 ± 23, respectively), demonstrating the ability of the proposed approach to establish complex relationships between planned dose and liver volume response months after treatment, which represents a promising prediction tool for the development of future adaptive and personalized liver radiation therapy strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547850 | PMC |
http://dx.doi.org/10.1088/1361-6560/acfa5f | DOI Listing |
Aesthetic Plast Surg
September 2025
Department of Plastic Surgery, The First Affiliated Hospital, Jinan University, No. 613 West, Huangpu Avenue, Guangzhou, 510630, Guangdong Province, China.
Background: Microfocused ultrasound (MFU) is a non-invasive technique used for facial rejuvenation, yet there is limited quantitative data on its long-term effects. This study aimed to evaluate the long-term efficacy and safety of MFU for facial rejuvenation. We utilized standardized photography along with advanced skin assessment technologies to analyze the impact of MFU on facial morphology, skin function, and patient satisfaction over a 12-month period.
View Article and Find Full Text PDFJ Pediatr Urol
August 2025
Hacettepe University Medical Faculty, Department of Pediatric Surgery, Ankara, Turkey.
Background: Patients with synchronous bilateral Wilms tumor (BWT) face challenges in balancing oncological control and nephron-sparing surgery (NSS). This study aimed to identify objective criteria for NSS in BWT by applying SIOP RTSG 2016 Umbrella Study criteria, the RENAL nephrometry scoring system, three-dimensional (3D) tumor volume measurements, and residual healthy kidney volume assessment.
Methods: A retrospective analysis was conducted on 14 patients with synchronous BWT.
J Prosthodont Res
September 2025
School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
Purpose: This study aimed to evaluate the performance of 3D-printed denture base resins (DBRs) compared with conventionally printed DBRs, examine their biofilm formation and physical properties, and determine the viability of 3D-printed DBRs as a superior alternative in removable prosthodontics.
Methods: The DBR samples were fabricated using traditional packing (TRA), milling (MIL), and 3D printing (3DP) methods. All samples were serially polished with an abrasive paper.
J Safety Res
September 2025
Department of Civil Engineering, Kırıkkale University, 71450 Yahşihan, Kırıkkale, Turkiye. Electronic address:
Introduction: Roundabouts are increasingly being used to improve traffic flow and reduce conflict points compared to traditional intersections. While previous studies have generally shown that roundabouts reduce vehicle collisions and improve traffic conditions, their impact on pedestrian safety, particularly in urban areas with high pedestrian traffic, has not been adequately studied. Despite the potential of roundabouts to reduce the overall severity of collisions, recent studies also point to specific safety challenges for pedestrians, including the difficulties faced by slow-moving people, changes in pedestrian behavior when avoiding roundabouts, and problems with disabled pedestrians are faced with.
View Article and Find Full Text PDFPharmacol Res
September 2025
University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, Vienna, Austria. Electronic address:
Hemorrhagic stroke occurs due to a rupture of a blood vessel in the brain. This leads to initial mechanical damage at the site of injury and secondary injuries including axonal degeneration (AxD). Since axons are critical for all brain functions, we systematically reviewed studies that focused on axonal degeneration in two major types of hemorrhagic stroke, intracerebral hemorrhage and subarachnoid hemorrhage, to understand how and to what extent AxD develops and to interrogate underlying mechanisms and potential therapeutic targets.
View Article and Find Full Text PDF