Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study developed and validated multivariable quantitative ultrasound (QUS) model for diagnosing hepatic steatosis. Retrospective secondary analysis of prospectively collected QUS data was performed. Participants underwent QUS examinations and magnetic resonance imaging proton density fat fraction (MRI-PDFF; reference standard). A multivariable regression model for estimating hepatic fat fraction was determined using two QUS parameters from one tertiary hospital (development set). Correlation between QUS-derived estimated fat fraction(USFF) and MRI-PDFF and diagnostic performance of USFF for hepatic steatosis (MRI-PDFF ≥ 5%) were assessed, and validated in an independent data set from the other health screening center(validation set). Development set included 173 participants with suspected NAFLD with 126 (72.8%) having hepatic steatosis; and validation set included 452 health screening participants with 237 (52.4%) having hepatic steatosis. USFF was correlated with MRI-PDFF (Pearson r = 0.799 and 0.824; development and validation set). The model demonstrated high diagnostic performance, with areas under the receiver operating characteristic curves of 0.943 and 0.924 for development and validation set, respectively. Using cutoff of 6.0% from development set, USFF showed sensitivity, specificity, positive predictive value, and negative predictive value of 87.8%, 78.6%, 81.9%, and 85.4% for diagnosing hepatic steatosis in validation set. In conclusion, multivariable QUS parameters-derived estimated fat fraction showed high diagnostic performance for detecting hepatic steatosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502048PMC
http://dx.doi.org/10.1038/s41598-023-42463-wDOI Listing

Publication Analysis

Top Keywords

hepatic steatosis
28
validation set
16
development validation
12
diagnosing hepatic
12
fat fraction
12
development set
12
diagnostic performance
12
set
9
multivariable quantitative
8
quantitative ultrasound
8

Similar Publications

Hic-5 deficiency attenuates MAFLD by inhibiting neutrophils migration via the CXCL1-CXCR2 axis.

J Gastroenterol

September 2025

Department of General Surgery (Hepatopancreatobiliary Surgery), Department of Biliary-Pancreatic Center, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou City, 646000, Sichuan Province, China.

Background And Aims: Inflammatory cell infiltration in the liver is a hallmark of metabolic dysfunction-associated fatty liver disease (MAFLD). However, the pathological events that trigger the infiltration of inflammatory cells to mediate MAFLD pathogenesis remains poorly understood. This study aims to investigate the function and mechanism of Hic-5 on hepatic inflammation of MAFLD.

View Article and Find Full Text PDF

The Proteomic Profiling of Circulating Extracellular Vesicles of Western Diet and Chemical-Induced Murine MASH Model.

Kaohsiung J Med Sci

September 2025

Hepatitis Research Center, College of Medicine; Center for Metabolic Disorders and Obesity; Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly prevalent chronic liver condition that can progress to severe complications such as metabolic dysfunction-associated steatohepatitis (MASH). Despite its growing burden, there are no reliable non-invasive biomarkers for tracking disease progression. In this study, we established a murine MASLD/MASH model using a high-fat diet and chemical (CCl) induction.

View Article and Find Full Text PDF

This study explores how human antigen R (HuR) stabilizes fibroblast growth factor 19 (FGF19) mRNA, inhibiting Kupffer cell (KC) activation to reduce inflammation and fibrosis in non-alcoholic fatty liver disease (NAFLD). An animal model of NAFLD was established in mice by administering a high-fat diet (HFD). In vitro study utilized a lipopolysaccharide-induced immortalized mouse KC model.

View Article and Find Full Text PDF

: Postmenopausal conditions can lead to metabolic disorders such as obesity and steatosis. (PT), a prominent traditional Chinese medicine, exerts potential therapeutic effects against hepatic injury. Nevertheless, the extent to which PT ameliorates liver damage resulting from estrogen deficiency, along with the associated mechanisms, remains poorly understood.

View Article and Find Full Text PDF

To investigate the genetic determinants of fat distribution across anatomical sites and their implications for health outcomes. We analyzed neck-to-knee MRI data from the UK Biobank ( = 37,589) to measure fat at various locations and used Mendelian randomization to assess effects on 26 obesity-related diseases and 94 biomarkers from FinnGen and other consortia. We identified genetic loci associated with 10 fat depots: abdominal subcutaneous adipose tissue ( = 2 loci), thigh subcutaneous adipose tissue (25), thigh intermuscular adipose tissue (15), visceral adipose tissue (7), liver proton density fat fraction (PDFF) (8), pancreas PDFF (11), paraspinal adipose tissue (9), pelvic bone marrow fat (28), thigh bone marrow fat (27), and vertebrae bone marrow fat (5).

View Article and Find Full Text PDF