Feasibility and Implementation of a 4D Free-Breathing Variable Density Stack-of-Stars Functional Magnetic Resonance Urography in Young Children Without Sedation.

Invest Radiol

From the Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany (J.S., M.E., I.T., J.S.); and Philips GmbH Market DACH, Hamburg, Germany (C.K., S.Z.).

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Functional magnetic resonance urography (MRU) is well established in the diagnostic workup of urinary tract anomalies in children, providing comprehensive morphological and functional information. However, dynamic contrast-enhanced images acquired in the standard Cartesian k-space manner are prone to motion artifacts. A newly introduced 4D high spatiotemporal resolution dynamic contrast-enhanced magnetic resonance imaging based on variable density elliptical centric radial stack-of-stars sharing technique has shown improved image quality regarding motions under free breathing.

Objective: The aims of this study were to implement this 4D free-breathing sequence for functional MRU and to compare its image quality and analyzability with standard breath-hold Cartesian MRU.

Materials And Methods: We retrospectively evaluated all functional 4D MRU performed without general anesthesia between September 2021 and December 2022 and compared them with matched pairs (age, affected kidney, diagnosis) of standard Cartesian MRU between 2016 and 2022. Image analysis was performed by 2 radiologists independently regarding the following criteria using a 4-point Likert scale, with 4 being the best: overall image quality, diagnostic confidence, respiratory motion artifacts, as well as sharpness and contrast of aorta, kidneys, and ureters. We also measured vertical kidney motion due to respiratory motion and compared the variance for each kidney using F test. Finally, both radiologists calculated the volume, split renal volume (vDRF), split renal Patlak function (pDRF), and split renal function considering the volume and Patlak function (vpDRF) for each kidney. Values were compared using Bland-Altman plots and F test.

Results: Forty children (20 for 4D free-breathing and standard breath-hold, respectively) were enrolled. Ten children of each group were examined using feed-and-sleep technique (median age: 4D, 3.3 months; standard, 4.2 months), 10 were awake (median age: 4D, 8.9 years; standard, 8.6 years). Overall image quality, diagnostic confidence, respiratory motion artifacts, as well as sharpness and contrast of the aorta, kidneys, and ureters were rated significantly better for 4D free-breathing compared with standard breath-hold by both readers ( P ranging from <0.0001 to 0.005). Vertical kidney motion was significantly reduced in 4D free-breathing for the right and the left kidney (both P < 0.001). There was a significantly smaller variance concerning the differences between the 2 readers for vpDRF in 4D MRU ( P = 0.0003). In contrast, no significant difference could be demonstrated for volume ( P = 0.05), vDRF ( P = 0.93), and pDRF ( P = 0.14).

Conclusions: We demonstrated the feasibility of applying a 4D free-breathing variable density stack-of-stars imaging for functional MRU in young pediatric patients with improved image quality, fewer motion artifacts, and improved functional analyzability.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RLI.0000000000001014DOI Listing

Publication Analysis

Top Keywords

image quality
16
magnetic resonance
12
motion artifacts
12
standard breath-hold
12
respiratory motion
12
split renal
12
variable density
8
functional magnetic
8
resonance urography
8
dynamic contrast-enhanced
8

Similar Publications

Purpose: In children with Langerhans Cell Histiocytosis (LCH), FDG-PET/CT is used for staging and response assessment. Whole-body MRI (WB-MRI) can serve as an ionizing radiation-free alternative for repeated whole-body imaging. The aim of this study was to compare WB-MRI with FDG-PET/CT for staging and response assessment in pediatric LCH.

View Article and Find Full Text PDF

Importance And Objective: Voice changes during menopause affect patients' communication and quality of life. This narrative review aims to provide a comprehensive exploration of voice changes during menopause. It presents objective and subjective/symptomatic changes as well as treatment options for this population.

View Article and Find Full Text PDF

Fetal 4D Flow CMR for Advanced Diagnostics of Congenital Heart Disease: A Prospective Cohort Study.

Eur Heart J Cardiovasc Imaging

September 2025

Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.

Aims: Fetal circulation undergoes complex changes in congenital heart disease (CHD) that are challenging to assess with fetal echocardiography. This study aimed to assess clinical feasibility and diagnostic value of 4D flow cardiac magnetic resonance (CMR) in fetal CHD.

Methods And Results: Pregnant women in advanced third trimester pregnancy with fetal CHD were prospectively recruited for fetal CMR between 08/2021 and 11/2024.

View Article and Find Full Text PDF

PurposeTo introduce, describe and validate a novel, 3D-printed portable slit lamp system integrated with a macro lens-equipped smartphone, providing clinicians with a quick, easy, and effective method for obtaining high-quality clinical images.Materials and MethodsA 3D-printed portable slit lamp was developed, comprising a warm white LED light pen housed in a custom case with a biconvex lens focusing light through a 0.4 mm slit.

View Article and Find Full Text PDF

Volumetric modulated arc therapy (VMAT) for lung cancer involves complex multileaf collimator (MLC) motion, which increases sensitivity to interplay effects with tumour motion. Current dynamic conformal arc methods address this issue but may limit the achievable dose distribution optimisation compared with standard VMAT. This study examined the clinical utility of a VMAT technique with monitor unit limits (VMATliMU) to mimic conformal arc delivery and reduce interplay effects while maintaining plan quality.

View Article and Find Full Text PDF