98%
921
2 minutes
20
Astrocytes are increasingly recognised as partaking in complex homeostatic mechanisms critical for regulating neuronal plasticity following central nervous system (CNS) insults. Ischaemic stroke and traumatic brain injury are associated with high rates of disability and mortality. Depending on the context and type of injury, reactive astrocytes respond with diverse morphological, proliferative and functional changes collectively known as astrogliosis, which results in both pathogenic and protective effects. There is a large body of research on the negative consequences of astrogliosis following brain injuries. There is also growing interest in how astrogliosis might in some contexts be protective and help to limit the spread of the injury. However, little is known about how astrocytes contribute to the chronic functional recovery phase following traumatic and ischaemic brain insults. In this review, we explore the protective functions of astrocytes in various aspects of secondary brain injury such as oedema, inflammation and blood-brain barrier dysfunction. We also discuss the current knowledge on astrocyte contribution to tissue regeneration, including angiogenesis, neurogenesis, synaptogenesis, dendrogenesis and axogenesis. Finally, we discuss diverse astrocyte-related factors that, if selectively targeted, could form the basis of astrocyte-targeted therapeutic strategies to better address currently untreatable CNS disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421637 | PMC |
http://dx.doi.org/10.1113/JP284197 | DOI Listing |
Purpose: To describe our integrated pelvic fascial structure-sparing (IPFSS) technique for robotic-assisted radical cystectomy (RARC) with intracorporeal orthotopic neobladder (ONB) reconstruction and to evaluate its impact on urinary continence and sexual function in male patients.
Methods: This retrospective observational study was conducted at a single high-volume center. Male bladder cancer patients who underwent IPFSS RARC with ONB were included.
Sci Total Environ
September 2025
Department of Animal Sciences and Aquatic Ecology, Ghent University, Gent, Belgium.
Wetlands play a crucial role in global greenhouse gas (GHG) dynamics, yet their response to climate change is not yet fully understood. Here, we investigate how increasing temperature and oxygen availability interact to regulate wetland GHG emissions through combined analysis of biogeochemical and functional gene measurements. We found distinct temperature-dependent shifts in carbon emission pathways, with CO emissions unexpectedly declining as temperature rose from 15 to 25 °C, while increasing consistently at higher temperatures (25-35 °C), reflecting a transition to more thermally-driven processes.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
National Engineering Lab for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
Methylparaben (MeP), Benzethonium chloride (BZC) and microplastics (MPs) as emerging contaminants are frequently detected in the environment. Furthermore, MPs can be colonized by microorganisms to form a unique ecological niche known as the "plastisphere". In this study, three biofilm-based sulfur autotrophic denitrification (SAD) reactors were established, which were exposed to 0.
View Article and Find Full Text PDFJ Clin Neurosci
September 2025
Department of Neurosurgery, LeHigh Valley Network, Allentown, PA, USA.
Introduction: The management of cerebral aneurysms in low- and middle-income countries (LMICs) faces significant barriers, including limited access to specialized neurosurgical care and equipment and dissipating human resources. Ghana's inaugural experience with cerebral aneurysm clipping, facilitated by the Global Brainsurgery Initiative (GBI), represent an attempt to address these challenges through international collaboration.
Methods: This case series details the outcomes of six patients who underwent cerebral aneurysm clipping procedures at two neurosurgical centers.
Atherosclerosis
August 2025
Institute for Clinical Chemistry and Laboratory Medicine, UniversityHospital and Faculty of Medicine, TU Dresden, 01307, Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307, Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University
Due to their remarkable plasticity, macrophages can adapt to diverse environments and challenges therein, thereby exerting tissue-specific and context-specific functions. Macrophages are the most frequent immune cell population present in the heart and contribute substantially to cardiac homeostasis and function. Moreover, macrophages are key regulators throughout all stages of heart injury, acquiring diverse phenotypes that can either ameliorate or exacerbate cardiac pathology in a context-dependent manner.
View Article and Find Full Text PDF