Placental single cell transcriptomics: Opportunities for endocrine disrupting chemical toxicology.

Mol Cell Endocrinol

Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA.

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The placenta performs essential biologic functions for fetal development throughout pregnancy. Placental dysfunction is at the root of multiple adverse birth outcomes such as intrauterine growth restriction, preeclampsia, and preterm birth. Exposure to endocrine disrupting chemicals during pregnancy can cause placental dysfunction, and many prior human studies have examined molecular changes in bulk placental tissues. Placenta-specific cell types, including cytotrophoblasts, syncytiotrophoblasts, extravillous trophoblasts, and placental resident macrophage Hofbauer cells play unique roles in placental development, structure, and function. Toxicant-induced changes in relative abundance and/or impairment of these cell types likely contribute to placental pathogenesis. Although gene expression insights gained from bulk placental tissue RNA-sequencing data are useful, their interpretation is limited because bulk analysis can mask the effects of a chemical on individual populations of placental cells. Cutting-edge single cell RNA-sequencing technologies are enabling the investigation of placental cell-type specific responses to endocrine disrupting chemicals. Moreover, in situ bioinformatic cell deconvolution enables the estimation of cell type proportions in bulk placental tissue gene expression data. These emerging technologies have tremendous potential to provide novel mechanistic insights in a complex heterogeneous tissue with implications for toxicant contributions to adverse pregnancy outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591899PMC
http://dx.doi.org/10.1016/j.mce.2023.112066DOI Listing

Publication Analysis

Top Keywords

endocrine disrupting
12
bulk placental
12
placental
11
single cell
8
pregnancy placental
8
placental dysfunction
8
disrupting chemicals
8
cell types
8
gene expression
8
placental tissue
8

Similar Publications

GADD45A is Essential for Granulosa Cells Differentiation and Ovarian Reserve in Human and Mice.

J Cell Mol Med

September 2025

Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.

Diminished ovarian reserve (DOR) poses significant challenges in reproductive health, with emerging evidence implicating DNA damage repair pathways. While GADD45A is a critical regulator of DNA repair, cell cycle and apoptosis, its role in DOR pathogenesis remains unexplored. We employed transcriptome sequencing, qPCR and Western Blot analyses to compare GADD45A expression in granulosa cells (GCs) between DOR patients and controls.

View Article and Find Full Text PDF

ROLE OF PHTHALATES IN BREAST CANCER INITIATION, PROGRESSION AND DRUG RERSISTANCE: a scoping review and recommendations.

Toxicol Lett

September 2025

Gynecologic and Breast Oncologic Surgery Department, European Hospital Georges Pompidou, APHP, Paris, France; Departement of environnemental toxicology, Université Paris Cité, INSERM UMR-S 1124, Paris.

Phthalates are endocrine-disrupting chemicals (EDCs) with implications in breast cancer (BC). This review synthesizes epidemiological and experimental data to evaluate the role of phthalates in BC initiation, progression, and therapeutic resistance. We performed a scoping review using bibliographic citations from PubMed, Clinical Trials.

View Article and Find Full Text PDF

Ionic liquid-modified COF nanosphere for efficient extraction and sensitive detection of bisphenol pollutants.

Food Chem

September 2025

Henan International Joint Laboratory of Medicinal Plants Utilization, Colleage of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China. Electronic address:

The bisphenols (BPs) contaminants with distinctive endocrine-disrupting properties have garnered significant attention. A new analytical methodology was proposed for the sensitive detection of hazardous BPs in efficient and food safety monitoring. The approach utilizes an ionic liquid-modified covalent organic framework (SCOF-V/IL-5F) as a solid-phase extraction adsorbent to enrich harmful BPs.

View Article and Find Full Text PDF

Predicting binding affinities of liquid crystal monomers: An activity cliffs-driven multidimensional feature fusion model.

Ecotoxicol Environ Saf

September 2025

Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.

Liquid crystal monomers (LCMs) have emerged as novel endocrine disrupting chemicals that affect the growth, development, and metabolism of organisms by binding to nuclear hormone receptors (NHRs). However, the studies on the impact of LCMs' molecular features on their binding affinities remain limited. In this study, considering the challenge of activity cliffs in linear quantitative structure-activity relationship modeling, a multidimensional feature fusion model was developed to predict the binding affinities of 1173 LCMs to 15 NHRs.

View Article and Find Full Text PDF

The effects of cadmium and high fructose diet on metabolic and reproductive health in female CD-1 mice.

Food Chem Toxicol

September 2025

Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC. Electronic address:

Background: Evaluation of the combined effects of endocrine-disrupting chemicals and dietary factors provides critical information for cumulative health risk assessment. Herein, we investigated the effects of cadmium (Cd) exposure and high fructose (HFr) diet on metabolic and reproductive health in female mice.

Methods: Female CD-1 mice were exposed to cadmium chloride (CdCl) (0.

View Article and Find Full Text PDF