98%
921
2 minutes
20
New solid-state materials have been discovered using various approaches from atom substitution in density functional theory (DFT) to generative models in machine learning. Recently, generative models have shown promising performance in finding new materials. Crystal generation with deep learning has been applied in various methods to discover new crystals. However, most generative models can only be applied to materials with specific elements or generate structures with random compositions. In this work, we developed a model that can generate crystals with desired compositions based on a crystal diffusion variational autoencoder. We generated crystal structures for 14 compositions of three types of materials in different applications. The generated structures were further stabilized using DFT calculations. We found the most stable structures in the existing database for all but one composition, even though eight compositions among them were not in the data set trained in a crystal diffusion variational autoencoder. This substantiates the prospect of the generation of an extensive range of compositions. Finally, 205 unique new crystal materials with energy above hull <100 meV/atom were generated. Moreover, we compared the average formation energy of the crystals generated from five compositions, two of which were hypothetical, with that of traditional methods like atom substitution and a generative model. The generated structures had lower formation energy than those of other models, except for one composition. These results demonstrate that our approach can be applied stably in various fields to design stable inorganic materials based on machine learning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.3c00935 | DOI Listing |
Comput Biol Med
September 2025
INSIGNEO Institute for in silico medicine, University of Sheffield, UK; School of Mechanical, Aerospace and Civil Engineering, University of Sheffield, UK. Electronic address:
Modelling cardiovascular disease is at the forefront of efforts to use computational tools to assist in the analysis and forecasting of an individual's state of health. To build trust in such tools, it is crucial to understand how different approaches perform when applied to a nominally identical scenario, both singularly and across a population. To examine such differences, we have studied the flow in aneurysms located on the internal carotid artery and middle cerebral artery using the commercial solver Ansys CFX and the open-source code HemeLB.
View Article and Find Full Text PDFStem Cell Res
September 2025
Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf 40225, Germany. Electronic address:
Pathogenic variants in the gene COQ4 cause primary coenzyme Q deficiency, which is associated with symptoms ranging from early epileptic encephalopathy up to adult-onset ataxia-spasticity spectrum disease. We genetically modified commercially available wild-type iPS cells by using a CRISPR/Cas9 approach to create heterozygous and homozygous isogenic cell lines carrying the disease-causing COQ4 variants c.458C > T, p.
View Article and Find Full Text PDFArch Med Res
September 2025
Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan. Electronic address:
Background: Atherosclerosis, a leading cause of cardiovascular disease (CVD) mortality worldwide, is characterized by dysregulated lipid metabolism and unresolved inflammation. Macrophage-derived foam cell formation and apoptosis contribute to plaque formation and vulnerability. Elevated serum galectin-3 (Gal-3) levels are associated with increased CVD risk, and Gal-3 in plaques is strongly associated with macrophages.
View Article and Find Full Text PDFJMIR Med Inform
September 2025
Departments of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China, 86 18922109279, 86 20852523108.
Background: Despite the Coronary Artery Reporting and Data System (CAD-RADS) providing a standardized approach, radiologists continue to favor free-text reports. This preference creates significant challenges for data extraction and analysis in longitudinal studies, potentially limiting large-scale research and quality assessment initiatives.
Objective: To evaluate the ability of the generative pre-trained transformer (GPT)-4o model to convert real-world coronary computed tomography angiography (CCTA) free-text reports into structured data and automatically identify CAD-RADS categories and P categories.