98%
921
2 minutes
20
SARS-CoV-2 has been expanding its host range, among which the white-tailed deer (WTD), became the first wildlife species infected on a large scale and might serve as a host reservoir for variants of concern (VOCs) in case no longer circulating in humans. In this study, we comprehensively assessed the binding of the WTD angiotensin-converting enzyme 2 (ACE2) receptor to the spike (S) receptor-binding domains (RBDs) from the SARS-CoV-2 prototype (PT) strain and multiple variants. We found that WTD ACE2 could be broadly recognized by all of the tested RBDs. We further determined the complex structures of WTD ACE2 with PT, Omicron BA.1, and BA.4/5 S trimer. Detailed structural comparison revealed the important roles of RBD residues on 486, 498, and 501 sites for WTD ACE2 binding. This study deepens our understanding of the interspecies transmission mechanisms of SARS-CoV-2 and further addresses the importance of constant monitoring on SARS-CoV-2 infections in wild animals. IMPORTANCE Even if we manage to eliminate the virus among humans, it will still circulate among wildlife and continuously be transmitted back to humans. A recent study indicated that WTD may serve as reservoir for nearly extinct SARS-CoV-2 strains. Therefore, it is critical to evaluate the binding abilities of SARS-CoV-2 variants to the WTD ACE2 receptor and elucidate the molecular mechanisms of binding of the RBDs to assess the risk of spillback events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537675 | PMC |
http://dx.doi.org/10.1128/jvi.00505-23 | DOI Listing |
J Virol
September 2023
CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China.
Ecohealth
March 2023
Bioinformatics and Bio-Data Science Division, Health Informatics Department, Universidade Federal de São Paulo - UNIFESP, Rua Botucatu 862 - Prédio Leal Prado (térreo), São Paulo, SP, 04023-062, Brazil.
The susceptibility of the white-tailed deer (WTD; Odocoileus virginianus) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted cervids as coronavirus reservoirs. This study aimed to evaluate the angiotensin-converting enzyme 2 (ACE2) residues which bind the spike protein of SARS-CoV-2 from 16 cervids to predict their potential susceptibility to SARS-CoV-2 infection. Eleven out of 16 species presented identical ACE2 key residues to WTD ACE2.
View Article and Find Full Text PDF