Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Patterns of microbial diversity on elevational gradients have been extensively studied, but little is known about those patterns during the restoration of earthquake-fractured alpine ecosystems. In this study, soil properties, soil enzyme activities, abundance and diversity of soil bacterial and fungal communities at four positions along a 2.6-km elevational gradient in the Snow Treasure Summit National Nature Reserve, located in Pingwu County, Southwest China. Although there were no significant changes in the soil chemical environment, bacterial and fungal communities were significantly different at different elevations. The overall fungal community presented an N-shaped diversity pattern with increasing elevation, while bacterial diversity decreased significantly with elevation. Changes in microbial diversity were associated with soil phosphorus, plant litter, and variations in dominant microbial taxa. Differences in enzyme activities among elevations were regulated by microbial communities, with changes in catalase and acid phosphatase activities mainly controlled by and bacteria, respectively (catalase:  < 0.001; acid phosphatase:  < 0.01), and those in β-glucosidase, sucrase, and urease activities mainly controlled by fungi. The β-glucosidase and sucrase were both positively correlated with , and urease was positively correlated with ( < 0.05). These findings contribute to the conservation and management of mountain ecosystems in the face of changing environmental conditions. Further research can delve into the specific interactions between microbial communities, soil properties, and vegetation to gain deeper insights into the intricate ecological dynamics within earthquake-prone mountain ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477999PMC
http://dx.doi.org/10.3389/fmicb.2023.1217925DOI Listing

Publication Analysis

Top Keywords

bacterial fungal
12
fungal communities
12
microbial diversity
8
enzyme activities
8
diversity
5
soil
5
discrepant diversity
4
diversity patterns
4
patterns function
4
bacterial
4

Similar Publications

remains a leading respiratory pathogen for children and the elderly. In Taiwan, a national PCV13 catch-up vaccination programme for children began in March 2013. This study investigates the population structure and antimicrobial profiles of pneumococcal isolates in Taiwan from 2006 to 2022.

View Article and Find Full Text PDF

Amphetamines are psychostimulants that are commonly used to treat neuropsychiatric disorders and are prone to misuse. The pathogenesis of amphetamine use disorder (AUD) is associated with dysbiosis (an imbalance in the body's microbiome) and bacterially produced short-chain fatty acids (SCFAs), which are implicated in the gut-brain axis. Amphetamine exposure in both rats and humans increases the amount of intestinal , which releases SFCAs.

View Article and Find Full Text PDF

PurposeTo evaluate the safety and ability of an ophthalmic solution containing Poloxamer 407 and Polyquaternium 133 to reduce conjunctival bacterial load before cataract surgery.MethodsPatients (n = 74) were randomized to 2 groups: treatment (n = 37) or placebo (treatment's vehicle; (n = 37)) BID from V1 to V3. Patients were also given standard postoperative treatment from V2 to V3.

View Article and Find Full Text PDF

Cathepsin Z is a conserved susceptibility factor underlying tuberculosis severity.

PLoS Biol

September 2025

Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America.

Tuberculosis (TB) outcomes vary widely, from asymptomatic infection to mortality, yet most animal models do not recapitulate human phenotypic and genotypic variation. The genetically diverse Collaborative Cross mouse panel models distinct facets of TB disease that occur in humans and allows identification of genomic loci underlying clinical outcomes. We previously mapped a TB susceptibility locus on mouse chromosome 2.

View Article and Find Full Text PDF

Macrophages are professional phagocytes that play a major role in engulfing and eliminating invading pathogens. Some intracellular pathogens, such as Salmonella enterica serovar Typhimurium, exploit macrophages as niches for their replication, which requires precise and dynamic modulation of bacterial gene expression in order to resist the hostile intracellular environment. Here, we present a comprehensive analysis of the global transcriptome of S.

View Article and Find Full Text PDF