Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The objective of bioimplant engineering is to develop biologically compatible materials for restoring, preserving, or altering damaged tissues and/or organ functions. The variety of substances used for orthopedic implant applications has been substantially influenced by modern material technology. Therefore, nanomaterials can mimic the surface properties of normal tissues, including surface chemistry, topography, energy, and wettability. Moreover, the new characteristics of nanomaterials promote their application in sustaining the progression of many tissues. The current review establishes a basis for nanotechnology-driven biomaterials by demonstrating the fundamental design problems that influence the success or failure of an orthopedic graft, cell adhesion, proliferation, antimicrobial/antibacterial activity, and differentiation. In this context, extensive research has been conducted on the nano-functionalization of biomaterial surfaces to enhance cell adhesion, differentiation, propagation, and implant population with potent antimicrobial activity. The possible nanomaterials applications (in terms of a functional nanocoating or a nanostructured surface) may resolve a variety of issues (such as bacterial adhesion and corrosion) associated with conventional metallic or non-metallic grafts, primarily for optimizing implant procedures. Future developments in orthopedic biomaterials, such as smart biomaterials, porous structures, and 3D implants, show promise for achieving the necessary characteristics and shape of a stimuli-responsive implant. Ultimately, the major barriers to the commercialization of nanotechnology-derived biomaterials are addressed to help overcome the limitations of current orthopedic biomaterials in terms of critical fundamental factors including cost of therapy, quality, pain relief, and implant life. Despite the recent success of nanotechnology, there are significant hurdles that must be overcome before nanomedicine may be applied to orthopedics. The objective of this review was to provide a thorough examination of recent advancements, their commercialization prospects, as well as the challenges and potential perspectives associated with them. This review aims to assist healthcare providers and researchers in extracting relevant data to develop translational research within the field. In addition, it will assist the readers in comprehending the scope and gaps of nanomedicine's applicability in the orthopedics field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478008PMC
http://dx.doi.org/10.3389/fbioe.2023.1206806DOI Listing

Publication Analysis

Top Keywords

cell adhesion
8
orthopedic biomaterials
8
orthopedic
5
implant
5
biomaterials
5
translation nanotechnology-based
4
nanotechnology-based implants
4
implants orthopedic
4
orthopedic applications
4
applications current
4

Similar Publications

Background: High-density lipoprotein (HDL) function, rather than its concentration, plays a crucial role in the development of coronary artery disease (CAD). Diminished HDL antioxidant properties, indicated by elevated oxidized HDL (nHDL) and diminished paraoxonase-1 (PON-1) activity, may contribute to vascular dysfunction and inflammation. Data on these associations in CAD patients, including acute coronary syndrome (ACS), remain limited.

View Article and Find Full Text PDF

Molecular imaging in nuclear medicine has been employed extensively in recent years for tumor-targeted diagnosis and treatment that is attributed to its non-invasive property, which enables visualized functional localization. This functionality relies on the development of radionuclide molecular probes designed with the objective of identifying specific targets on the surface of tumors. Epithelial cell adhesion molecules (EpCAM) are considered to be a promising target as an antigenic marker for its widely present and integral to the processes associated with tumor occurrence and progression.

View Article and Find Full Text PDF

predicts poor prognosis and modulates immune infiltration in gastric cancer: a TCGA-based bioinformatics study.

Front Genet

August 2025

Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China.

Background: Gastric cancer (GC) is a leading cause of cancer-related mortality; however, biomarkers predicting its immunotherapy resistance remain scarce. Vascular cell adhesion molecule ()-, an immune cell adhesion mediator, is implicated in tumor progression; however, its prognostic and immunomodulatory roles in GC remain unclear.

Methods: In this study, we analyzed expression and its clinical relevance in GC using RNA-sequencing data from The Cancer Genome Atlas.

View Article and Find Full Text PDF

Multicellular organisms generate organizational complexity through morphogenesis, in which mechanical forces orchestrate the movements and deformations of cells and tissues, while chemical signals regulate the molecular events that generate and coordinate these forces. One common denominator that is critical both for mechanics and biochemistry is material property. Material properties define how materials deform or rearrange under applied forces, and how rapidly molecules interact or spread in space and time.

View Article and Find Full Text PDF

Staphylococcus epidermidis is recognized as the major cause of implanted indwelling medical device-related infections. The ability of S. epidermidis to form biofilms largely increases its resistance to conventional antibiotics, which is the major cause of treatment failure.

View Article and Find Full Text PDF