98%
921
2 minutes
20
Molybdenum disulfide (MoS ), a metal dichalcogenide, is a promising channel material for highly integrated scalable transistors. However, intrinsic donor defect states, such as sulfur vacancies (V ), can degrade the channel properties and lead to undesired n-doping. A method for healing the donor defect states in monolayer MoS is proposed using oxygen plasma, with an aluminum oxide (Al O ) barrier layer that protects the MoS channel from damage by plasma treatment. Successful healing of donor defect states in MoS by oxygen atoms, even in the presence of an Al O barrier layer, is confirmed by X-ray photoelectron spectroscopy, photoluminescence, and Raman spectroscopy. Despite the decrease in 2D sheet carrier concentration (Δn = -3.82×10 cm ), the proposed approach increases the on-current and mobility by 18% and 44% under optimal conditions, respectively. Metal-insulator transition occurs at electron concentrations of 5.7×10 cm and reflects improved channel quality. Finally, the activation energy (E ) reduces at all the gate voltages (V ) owing to a decrease in V , which act as a localized state after the oxygen plasma treatment. This study demonstrates the feasibility of plasma-assisted healing of defects in 2D materials and electrical property enhancement and paves the way for the development of next-generation electronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202305143 | DOI Listing |
J Craniofac Surg
September 2025
Department of Plastic and Reconstructive Surgery, Hanoi Medical University.
Introduction: Complex soft tissue injuries in the facial area can arise from various causes. Surgeons face significant challenges when reconstructing these injuries, as they must select appropriate materials based on texture and color, while also considering their composition and properties. The anterolateral thigh (ALT) flap has emerged as a versatile option in clinical reconstructive surgery, offering many advantages over other free flaps.
View Article and Find Full Text PDFFront Toxicol
August 2025
Ncardia Services B.V., Leiden, Netherlands.
Introduction: Efficient preclinical prediction of cardiovascular side effects poses a pivotal challenge for the pharmaceutical industry. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are becoming increasingly important in this field due to inaccessibility of human native cardiac tissue. Current preclinical hiPSC-CMs models focus on functional changes such as electrophysiological abnormalities, however other parameters, such as structural toxicity, remain less understood.
View Article and Find Full Text PDFJBJS Essent Surg Tech
September 2025
Division of Hand and Reconstructive Microsurgery, Department of Orthopedics, Olympia Hospital & Research Centre, Trichy, Tamilnadu, India.
Background: Hemi-hamate osteochondral grafting is a surgical technique that is utilized to reconstruct the proximal interphalangeal (PIP) joint in cases of unstable dorsal fracture-dislocation with >50% articular surface involvement. However, hemi-hamate osteochondral grafting can be technically challenging, has been reported to have various technical modifications, and can lead to complications such as overstuffing of the joint. This surgical technique article describes successful PIP joint reconstruction with use of a hemi-capitate osteochondral graft, which may offer a viable alternative to hemi-hamate osteochondral graft.
View Article and Find Full Text PDFRSC Adv
August 2025
Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais Lisboa 1049-001 Portugal
Bone-related injuries represent a major global challenge, particularly for the aging population. While bone has self-healing capabilities, large defects and non-union fractures often fail to completely regenerate, leading to long-term disability and the need for surgical intervention. Autologous bone grafts remain the gold standard for such procedures, but challenges such as limited donor availability and donor site comorbidity persist.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Molecular spin systems that can be chemically tuned, coherently controlled, and readily integrated within devices remain central to the realization of emerging quantum technologies. Organic high-spin materials are prime candidates owing to their similarity in electronic structure to leading solid-state defect-based systems, light element composition, and the potential for entanglement and qubit operations mediated through spin-spin exchange. However, the inherent instability of these species precludes their rational design, development, and application.
View Article and Find Full Text PDF