98%
921
2 minutes
20
Plants often face simultaneous abiotic and biotic stress conditions; however, physiological and transcriptional responses under such combined stress conditions are still not fully understood. Spring barley (Hordeum vulgare) is susceptible to Fusarium head blight (FHB), which is strongly affected by weather conditions. We therefore studied the potential influence of drought on FHB severity and plant responses in three varieties of different susceptibility. We found strongly reduced FHB severity in susceptible varieties under drought. The number of differentially expressed genes (DEGs) and strength of transcriptomic regulation reflected the concentrations of physiological stress markers such as abscisic acid or fungal DNA contents. Infection-related gene expression was associated with susceptibility rather than resistance. Weighted gene co-expression network analysis revealed 18 modules of co-expressed genes that reflected the pathogen- or drought-response in the three varieties. A generally infection-related module contained co-expressed genes for defence, programmed cell death, and mycotoxin detoxification, indicating that the diverse genotypes used a similar defence strategy towards FHB, albeit with different degrees of success. Further, DEGs showed co-expression in drought- or genotype-associated modules that correlated with measured phytohormones or the osmolyte proline. The combination of drought stress with infection led to the highest numbers of DEGs and resulted in a modular composition of the single-stress responses rather than a specific transcriptional output.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erad348 | DOI Listing |
Phytopathology
September 2025
Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Xinong Road #22, Yangling, Shaanxi, China, 712100.
head blight (FHB), caused by the FHB species complex, is one of the most damaging diseases affecting wheat. Accurately predicting FHB occurrence prior to infection is crucial for preventing outbreaks, minimizing crop losses, and reducing the risks of mycotoxins entering the food chain. This study utilized 55 years of historical weather data and the level of primary inoculum in crop debris to predict FHB severity.
View Article and Find Full Text PDFFungal Biol
October 2025
University of Tuscia, Department of Agriculture and Forest Sciences (DAFNE), Via San Camillo de Lellis SNC, Viterbo, Italy.
Fusarium Head Blight (FHB), caused by various Fusarium species, is a major threat to global cereal production. F. avenaceum is an important FHB pathogen producing enniatin mycotoxins.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Centro de Genômica e Fitomelhoramento, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas 96010-900, Brazil.
head blight (FHB) is a major threat to wheat production that is caused by toxigenic species of the complex. This study aimed to investigate the biochemical and molecular defense responses of Brazilian wheat genotypes (BRS 194, BRS Parrudo, and Frontana) with contrasting FHB susceptibilities following inoculation with (deoxynivalenol producer) and (nivalenol producer). Temporal patterns of antioxidant enzymes, defense-related enzymes, and gene expression ( and ) were analyzed from 12 to 96 h after inoculation.
View Article and Find Full Text PDFPlant Biotechnol J
September 2025
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
Plants (Basel)
August 2025
Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
Global food security relies on wheat, maize, and soybean, yet their cultivation faces escalating threats from Fusarium head blight (FHB) pathogens. We demonstrate that agricultural intensification enables cross-kingdom root infections by and across these crops. Screening of 180 strains revealed tripartite host infectivity, with transcriptomics uncovering host-adapted virulence strategies.
View Article and Find Full Text PDF