Sources of intraspecific variation in the isotopic niche of a semi-aquatic predator in a human-modified landscape.

PeerJ

Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Distrito Federal, Brazil.

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intraspecific variation modulates patterns of resource use by species, potentially affecting the structure and stability of food webs. In human-modified landscapes, habitat disturbance modifies trophic interactions and intraspecific niche variation, impacting population persistence. Here, we investigated the relationship of sex, ontogeny, and habitat factors with the trophic niche of in an agricultural landscape. We evaluated temporal variation in the trophic niche parameters using carbon and nitrogen stable isotope analysis from different body tissues. We found that caimans exploit the same carbon and nitrogen pools through time, with low isotopic variability between seasons, partly due to the slow isotope turnover rates of tissues in crocodilians. Conversely, the trophic niche of caimans varied across habitats, but with no evidence of a difference between natural and anthropogenic habitats. It apparently results from the influence of habitat suitability, connectivity, and caiman movements during the foraging. Our findings highlight the broader niches of juvenile caimans relative to adults, possibly in response of territorialism and opportunistic foraging strategy. Although using similar resources, females had a larger niche than males, probably associated with foraging strategies during nesting. Considering the sex and body size categories, caimans occupied distinct isotopic regions in some habitats, indicating apparent niche segregation. Ontogenetic trophic shifts in the isotopes (C and N) depended on sex, leading to resource partitioning that can potentially reduce intraspecific competition. Decision-makers and stakeholders should consider the trophic dynamics of sex and body size groups for the sustainable management and conservation of caiman populations, which implies in the maintenance of wetland habitats and landscape heterogeneity in the Formoso River floodplain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474837PMC
http://dx.doi.org/10.7717/peerj.15915DOI Listing

Publication Analysis

Top Keywords

trophic niche
12
intraspecific variation
8
carbon nitrogen
8
sex body
8
body size
8
niche
7
trophic
6
sources intraspecific
4
variation
4
variation isotopic
4

Similar Publications

Habitat structure and predator diversity jointly shape the arrangement of predator-prey networks.

J Anim Ecol

September 2025

Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic.

Research Highlight: Chen, J., Wang, M. Q.

View Article and Find Full Text PDF

Invasive predatory fish occupies highest trophic position leading to expansion of isotopic niches in a riverine food web.

Ecology

September 2025

U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, Pennsylvania, USA.

Invasive species are drivers of ecological change with the potential to reshape the structure and function of terrestrial and aquatic ecosystems. The invasive flathead catfish (Pylodictis olivaris) is an opportunistic predator that has established a rapidly growing population in the Susquehanna River, Pennsylvania, USA, since they were first detected in 2002. Although the predatory effects of invasive catfishes on native fish communities have been documented, the effects of invasion on riverine food webs are poorly understood.

View Article and Find Full Text PDF

Mercury (Hg) emissions from both natural and anthropogenic sources influence Hg levels in the biota of a given region. Tropical regions, such as those in the Southwestern Atlantic (SWA) and the Eastern Pacific (EP) are particularly interesting due to differences in natural Hg sources, which may impact Hg levels in marine organisms, including sea turtles. In the EP, the Circum-Pacific Belt is a significant natural source of Hg, while natural Hg sources in the SWA are negligible.

View Article and Find Full Text PDF

Microbial Symbiosis in Lepidoptera: Analyzing the Gut Microbiota for Sustainable Pest Management.

Biology (Basel)

July 2025

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Recent advances in microbiome studies have deepened our understanding of endosymbionts and gut-associated microbiota in host biology. Of those, lepidopteran systems in particular harbor a complex and diverse microbiome with various microbial taxa that are stable and transmitted between larval and adult stages, and others that are transient and context-dependent. We highlight key microorganisms-including , , , , , , , , , and -that play critical roles in microbial ecology, biotechnology, and microbiome studies.

View Article and Find Full Text PDF

Among-individual variability in animal behaviour and diet leads to a plethora of mini-niches within a population's general niche. Such variability is directly or indirectly linked to inter- and intra-specific competition, behavioural adaptation and variation in foraging tactics, which may lead to evolutionary divergence and speciation but is also relevant to population resilience and conservation. We used boat surveys, photo-identification techniques, biopsy sampling and stable isotope analysis (δC, δN) to study the intra-population isotopic niche variation in an apex predator, the common bottlenose dolphin (Tursiops truncatus), in the northern Adriatic Sea.

View Article and Find Full Text PDF