Focused classifications and refinements in high-resolution single particle cryo-EM analysis.

J Struct Biol

Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la SantÃ

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent advances in cryo electron microscopy (cryo-EM) and image processing provide new opportunities to analyse drug targets at high resolution. However, structural heterogeneity limits resolution in many practical cases, hence restricting the level at which structural details can be analysed and drug design be performed. As structural disorder is not spread throughout the entire structure of a given macromolecular complex but instead is found in certain regions that move with respect to others and covering molecular scales from domain conformational changes up to the level of side chain conformations in ligand binding pockets, it is possible to focus the attention on those regions and the associated relative movements. Here we show how the usage of focused classifications and refinements provide insights into global conformational arrangements, exemplified on the human ribosome and on the cannabinoid G protein coupled receptor (GPCR), and how they can improve the local map resolution from an essentially disordered region to the 3-4 Å and finally to the 2 Å resolution range. A systematic analysis with variable spherical masks during focused refinement is presented showing that the choice of an optimal mask size helps refining to high resolution. This study covers several practical approaches on 4 examples illustrating how important mask size & shape and including neighbouring structural elements are for a focused analysis of a macromolecular complex. Such methods will be crucial for cryo-EM structure-based drug design of various medical targets and are applicable to single particle cryo-EM and electron tomography data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsb.2023.108015DOI Listing

Publication Analysis

Top Keywords

focused classifications
8
classifications refinements
8
single particle
8
particle cryo-em
8
high resolution
8
drug design
8
macromolecular complex
8
mask size
8
resolution
5
focused
4

Similar Publications

Background And Aims: Crop wild relatives (CWRs) are key resources for enhancing agricultural resilience, providing genetic traits that can improve pest resistance, abiotic stress tolerance, and nutritional composition in domesticated crops. Within the mustard family (Brassicaceae) this is especially significant in the Brassiceae tribe, which includes economically important genera for agriculture such as Brassica and Sinapis. However, while breeding programmes have historically focused on major crops within this tribe, the potential of their wild relatives, particularly for underutilised and minor crops, remains insufficiently explored.

View Article and Find Full Text PDF

3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices-specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers-which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components.

View Article and Find Full Text PDF

Plastic-Microbial BioRemediation DB: A Curated Database for Multi-Omics Applications.

Environ Microbiol Rep

October 2025

Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.

Plastic pollution is a major environmental challenge, with millions of tonnes produced annually and accumulating in ecosystems, causing long-term harm. Conventional disposal methods, such as landfilling and incineration, are often inadequate, emphasising the need for sustainable solutions like bioremediation. However, the bacterial biodiversity involved in plastic biodegradation remains poorly understood.

View Article and Find Full Text PDF

Recent progress of rapid detection technologies for mycotoxins.

Food Chem

September 2025

International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China. Electronic address:

Mycotoxins, due to their high carcinogenic and genotoxic properties, pose a significant threat to global food safety. Traditional detection methods often fall short in meeting the demands for large-scale, real-time, simple, and rapid monitoring. As a result, innovative rapid detection approaches, leveraging advanced materials and sensor technologies, are emerging as key solutions for preventing food contamination.

View Article and Find Full Text PDF

Harnessing Explainable AI to Explore Structure-Activity Relationships in Artificial Olfaction.

ACS Appl Mater Interfaces

September 2025

Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568, Japan.

Chemical sensor arrays mimic the mammalian olfactory system to achieve artificial olfaction, and receptor materials resembling olfactory receptors are being actively developed. To realize practical artificial olfaction, it is essential to provide guidelines for developing effective receptor materials based on the structure-activity relationship. In this study, we demonstrated the visualization of the relationship between sensing signal features and odorant molecular features using an explainable AI (XAI) technique.

View Article and Find Full Text PDF