Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite advances in four-factor (4F)-induced reprogramming (4FR) in vitro and in vivo, how 4FR interconnects with senescence remains largely under investigated. Here, using genetic and chemical approaches to manipulate senescent cells, we show that removal of p16 cells resulted in the 4FR of somatic cells into totipotent-like stem cells. These cells expressed markers of both pluripotency and the two-cell embryonic state, readily formed implantation-competent blastoids and, following morula aggregation, contributed to embryonic and extraembryonic lineages. We identified senescence-dependent regulation of nicotinamide N-methyltransferase as a key mechanism controlling the S-adenosyl-L-methionine levels during 4FR that was required for expression of the two-cell genes and acquisition of an extraembryonic potential. Importantly, a partial 4F epigenetic reprogramming in old mice was able to reverse several markers of liver aging only in conjunction with the depletion of p16 cells. Our results show that the presence of p16 senescent cells limits cell plasticity, whereas their depletion can promote a totipotent-like state and histopathological tissue rejuvenation during 4F reprogramming.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41556-023-01214-9DOI Listing

Publication Analysis

Top Keywords

senescent cells
8
p16 cells
8
cells
7
p16
4
p16 senescence
4
senescence restricts
4
restricts cellular
4
cellular plasticity
4
plasticity somatic
4
somatic cell
4

Similar Publications

Osteoporotic hip fractures are a considerable cause of pain and disability particularly among the elderly. Osteoporosis causes loss of bone stability, which in turn leads to an increased risk of fractures especially in metaphyseal bone. Moreover, the body's capacity for healing is diminished, resulting in prolonged recovery times following these fractures.

View Article and Find Full Text PDF

Aging is a major risk factor for various neurological disorders, including Alzheimer's disease, and is associated with the accumulation of senescent cells, which can themselves propagate the senescence process through paracrine signaling. Migrasomes are organelles that form during cellular migration, detach from parent cells and mediate intercellular communication. Here we demonstrate that border-associated macrophages (BAMs) acquire senescence-associated properties during early brain aging, possibly due to prolonged exposure to amyloid beta.

View Article and Find Full Text PDF

Functional synapses between neurons and small cell lung cancer.

Nature

September 2025

Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.

Small cell lung cancer (SCLC) is a highly aggressive type of lung cancer, characterized by rapid proliferation, early metastatic spread, frequent early relapse and a high mortality rate. Recent evidence has suggested that innervation has an important role in the development and progression of several types of cancer. Cancer-to-neuron synapses have been reported in gliomas, but whether peripheral tumours can form such structures is unknown.

View Article and Find Full Text PDF

Circadian oscillations of gene transcripts rely on a negative feedback loop executed by the activating BMAL1-CLOCK heterodimer and its negative regulators PER and CRY. Although circadian rhythms and CLOCK protein are mostly absent during embryogenesis, the lack of BMAL1 during prenatal development causes an early aging phenotype during adulthood, suggesting that BMAL1 performs an unknown non-circadian function during organism development that is fundamental for healthy adult life. Here, we show that BMAL1 interacts with TRIM28 and facilitates H3K9me3-mediated repression of transposable elements in naïve pluripotent cells, and that the loss of BMAL1 function induces a widespread transcriptional activation of MERVL elements, 3D genome reorganization and the acquisition of totipotency-associated molecular and cellular features.

View Article and Find Full Text PDF

Influence of oxidative stress on women's fertility: A model with a generational age Caputo's fractional derivative.

Biosystems

September 2025

IVIRMA Global Research Alliance, The Health Research Institute La Fe (IIS La Fe), Edificio Biopolo. Av. Fernando Abril Martorell, 106 - Torre A, Planta 1, Valencia, 46026, Spain; Rey Juan Carlos University, Department of Medical Specialties and Public Health, Edificio Departamental II. Av. de Atenas

Cellular aging associated with telomeric shortening plays an important role in female fertility. In addition to natural decline, due to the loss of telomeric repeats during cell division, other factors such oxidative stress (OS), accelerate telomere shortening by causing a dramatic loss of telomeric repeats. Thus, mathematical models to better understand the accelerated aging leading to infertility are lacking in the literature.

View Article and Find Full Text PDF