98%
921
2 minutes
20
The target of rapamycin (TOR) signalling pathway plays a key role in the coordination between cellular growth and the cell cycle machinery in eukaryotes. The underlying molecular mechanisms by which TOR might regulate events after anaphase remain unknown. We show for the first time that one of the 2 TOR complexes in budding yeast, TORC1, blocks the separation of cells following cytokinesis by phosphorylation of a member of the NDR (nuclear Dbf2-related) protein-kinase family, the protein Cbk1. We observe that TORC1 alters the phosphorylation pattern of Cbk1 and we identify a residue within Cbk1 activation loop, T574, for which a phosphomimetic substitution makes Cbk1 catalytically inactive and, indeed, reproduces TORC1 control over cell separation. In addition, we identify the exocyst component Sec3 as a key substrate of Cbk1, since Sec3 activates the SNARE complex to promote membrane fusion. TORC1 activity ultimately compromises the interaction between Sec3 and a t-SNARE component. Our data indicate that TORC1 negatively regulates cell separation in budding yeast by participating in Cbk1 phosphorylation, which in turn controls the fusion of secretory vesicles transporting hydrolase at the site of division.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468069 | PMC |
http://dx.doi.org/10.1371/journal.pbio.3002263 | DOI Listing |
Angew Chem Int Ed Engl
September 2025
Division Macromolecular Chemistry, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden, 01069, Germany.
Stimuli-responsive (multiphase) coacervates deserve significant attention as cell-like entities that can adapt to their environment and undergo morphological reconfiguration. In this study, a tandem-triggered transition system is presented that enables the transformation of single-phase coacervates into multiphase structures through the sequential application of two external stimuli: pH and salt concentration. A polyanion containing acid-labile amide bond is incorporated into the membrane-less coacervates.
View Article and Find Full Text PDFCell Rep
September 2025
Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA. Electronic address:
RNA polymerase II (RNAPII) is regulated by sequence-specific transcription factors (TFs) and the pre-initiation complex (PIC): TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and Mediator. TFs, Mediator, and RNAPII contain intrinsically disordered regions (IDRs) and form phase-separated condensates, but how IDRs control RNAPII function remains poorly understood. Using purified PIC factors, we developed a real-time in vitro fluorescence transcription (RIFT) assay for second-by-second visualization of transcription at hundreds of promoters simultaneously.
View Article and Find Full Text PDFMol Cell
August 2025
Lingang Laboratory, Shanghai 200031, China. Electronic address:
YAP/TAZ are transcriptional co-activators that pair with transcription factor TEA/ATTS domains (TEADs) for modulating the Hippo pathway. Previous works propose the potential role of YAP/TAZ phase separation for transcriptional activation, yet the biomolecular basis of endogenous YAP/TAZ-TEAD condensates remains unclear. Here, we dissect their endogenous morphology, revealing that YAP/TAZ are client proteins recruited to TEAD condensates in various human cell lines.
View Article and Find Full Text PDFInt J Food Microbiol
August 2025
Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:
The interactions between Saccharomyces cerevisiae and non-Saccharomyces yeasts through secreted metabolites play a crucial role in shaping wine aroma profiles, yet the underlying mechanisms remain inadequately understood. This study used a cell/medium separation strategy coupled with transcriptomic and metabolomic analyses to elucidate the influence of S. cerevisiae metabolites on aroma biosynthesis in Torulaspora delbrueckii during wine fermentation.
View Article and Find Full Text PDFAdv Biol Regul
September 2025
Laboratory of Cancer Cell Architecture, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic. Electronic address:
Biomolecular condensates (BMCs) are membrane-less organelles formed through liquid-liquid phase separation, primarily driven by multivalent interactions between scaffold and client molecules. These dynamic compartments enable cells to spatially and temporally organize biochemical reactions by locally concentrating specific biomolecules, thereby enhancing the frequency of productive molecular interactions and increasing reaction rates. BMCs are integral to normal cellular physiology, with well-characterized examples including the nucleolus and Cajal bodies.
View Article and Find Full Text PDF