98%
921
2 minutes
20
Arbuscular mycorrhizal fungi (AMF) form symbioses with most terrestrial plants and are known to have a positive effect on plant growth and health. Different methodologies have been developed to assess the AMF-plant symbiosis. The most applied method, which involves staining of roots and microscopic observation of the AMF structures, is tedious and time-consuming and the results are highly dependent on the observer. Using quantitative polymerase chain reaction (qPCR) to quantify AMF root colonization represents a reliable, high-throughput technique that allows the assessment of numerous samples. Quantification with qPCR can be performed through two methods: relative quantification and absolute quantification. In relative quantification, the target gene is normalized with a reference gene. On the other hand, absolute quantification involves the use of a standard curve, for which template DNA is serially diluted. In a previous paper, we validated the primer pair AMG1F and AM1 for a relative quantification approach to assess AMF root colonization in Petunia. Here, we tested the same primers with an absolute quantification approach and compared the results with the traditional microscopy method. We evaluated the qPCR method with three different crops, namely, wheat (cv. Colmetta and Wiwa), tomato, and leek. We observed a strong correlation between microscopy and qPCR for Colmetta (r = 0.90, p < 0.001), Wiwa (r = 0.94, p < 0.001), and tomato (r = 0.93, p < 0.001), but no correlation for leek (r = 0.27, p = 0.268). This highlights the importance of testing the primer pair for each specific crop.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10752845 | PMC |
http://dx.doi.org/10.1007/s00572-023-01122-8 | DOI Listing |
New Phytol
September 2025
Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK.
A key feature of extant conifer forests is the high percentage of seeds that germinate and establish on dead wood; in some forests, this can exceed 90%. This deadwood can act as an ideal nursery for young tree species, leading to this type of seedbed being termed 'nurse logs'. It is unclear how common this ecological strategy has been throughout the evolutionary history of conifers.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:
Tomato Fusarium wilt, caused by the soil-borne pathogen Fusarium oxysporum f. sp. lycopersici (Fol), poses a significant threat to global tomato production, resulting in severe losses in both yield and quality.
View Article and Find Full Text PDFPest Manag Sci
September 2025
College of Plant Protection, Shenyang Agricultural University, Shenyang, China.
Background: Clubroot, caused by Plasmodiophora brassicae, significantly impacts cruciferous crop production worldwide. Biocontrol is an environmentally friendly and promising approach for clubroot management. Endophytic bacteria are known for their ability to promote plant growth and induce resistance against plant diseases.
View Article and Find Full Text PDFNew Phytol
September 2025
Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB, Utrecht, the Netherlands.
Plant roots interact with pathogenic and beneficial microbes in the soil. While root defense barriers block pathogens, their roles in facilitating beneficial plant-microbe associations are understudied. Here, we examined the impact of specific root defense barriers on the well-known beneficial association between Arabidopsis thaliana and the plant growth-promoting rhizobacterium Pseudomonas simiae WCS417.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Genetics and Biochemistry Laboratory, Embrapa Agrobiologia, Seropédica, Rio de Janeiro, Brazil.
Plant growth-promoting bacteria (PGPB) possessing 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity have the potential to enhance plant growth and development, particularly under adverse environmental conditions. This study aimed to identify bacterial strains with ACC deaminase activity able of mitigating the effects of water deficit stress and promoting the growth of genotypes. Bacterial strains isolated from genotypes were screened for ACC deaminase activity, and the presence of the gene was confirmed via polymerase chain reaction (PCR) analysis.
View Article and Find Full Text PDF